| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > iunn0 | GIF version | ||
| Description: There is a non-empty class in an indexed collection B(x) iff the indexed union of them is non-empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iunn0 | ⊢ (∃x ∈ A B ≠ ∅ ↔ ∪x ∈ A B ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 2878 | . . 3 ⊢ (∃x ∈ A ∃y y ∈ B ↔ ∃y∃x ∈ A y ∈ B) | |
| 2 | eliun 3973 | . . . 4 ⊢ (y ∈ ∪x ∈ A B ↔ ∃x ∈ A y ∈ B) | |
| 3 | 2 | exbii 1582 | . . 3 ⊢ (∃y y ∈ ∪x ∈ A B ↔ ∃y∃x ∈ A y ∈ B) |
| 4 | 1, 3 | bitr4i 243 | . 2 ⊢ (∃x ∈ A ∃y y ∈ B ↔ ∃y y ∈ ∪x ∈ A B) |
| 5 | n0 3559 | . . 3 ⊢ (B ≠ ∅ ↔ ∃y y ∈ B) | |
| 6 | 5 | rexbii 2639 | . 2 ⊢ (∃x ∈ A B ≠ ∅ ↔ ∃x ∈ A ∃y y ∈ B) |
| 7 | n0 3559 | . 2 ⊢ (∪x ∈ A B ≠ ∅ ↔ ∃y y ∈ ∪x ∈ A B) | |
| 8 | 4, 6, 7 | 3bitr4i 268 | 1 ⊢ (∃x ∈ A B ≠ ∅ ↔ ∪x ∈ A B ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∃wex 1541 ∈ wcel 1710 ≠ wne 2516 ∃wrex 2615 ∅c0 3550 ∪ciun 3969 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-nul 3551 df-iun 3971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |