| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mp3an12 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an12.1 | ⊢ φ |
| mp3an12.2 | ⊢ ψ |
| mp3an12.3 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| mp3an12 | ⊢ (χ → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12.2 | . 2 ⊢ ψ | |
| 2 | mp3an12.1 | . . 3 ⊢ φ | |
| 3 | mp3an12.3 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
| 4 | 2, 3 | mp3an1 1264 | . 2 ⊢ ((ψ ∧ χ) → θ) |
| 5 | 1, 4 | mpan 651 | 1 ⊢ (χ → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 934 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: ceqsralv 2886 opkelopkabg 4245 otkelins2kg 4253 otkelins3kg 4254 opkelcokg 4261 vfin1cltv 4547 vfinspss 4551 fvfullfunlem3 5863 fvfullfun 5864 clos1nrel 5886 cenc 6181 nclec 6195 nc0le1 6216 nclenc 6222 |
| Copyright terms: Public domain | W3C validator |