| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > necon2ai | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon2ai.1 | ⊢ (A = B → ¬ φ) |
| Ref | Expression |
|---|---|
| necon2ai | ⊢ (φ → A ≠ B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2520 | . . 3 ⊢ (¬ A ≠ B ↔ A = B) | |
| 2 | necon2ai.1 | . . 3 ⊢ (A = B → ¬ φ) | |
| 3 | 1, 2 | sylbi 187 | . 2 ⊢ (¬ A ≠ B → ¬ φ) |
| 4 | 3 | con4i 122 | 1 ⊢ (φ → A ≠ B) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ≠ wne 2516 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-ne 2518 |
| This theorem is referenced by: necon2i 2563 neneqad 2586 peano4 4557 addccan2 4559 ncssfin 6151 ncspw1eu 6159 nntccl 6170 ceclb 6183 ce0ncpw1 6185 cecl 6186 nclecid 6197 le0nc 6200 addlecncs 6209 |
| Copyright terms: Public domain | W3C validator |