| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > neeq2i | GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) |
| Ref | Expression |
|---|---|
| neeq1i.1 | ⊢ A = B |
| Ref | Expression |
|---|---|
| neeq2i | ⊢ (C ≠ A ↔ C ≠ B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1i.1 | . 2 ⊢ A = B | |
| 2 | neeq2 2525 | . 2 ⊢ (A = B → (C ≠ A ↔ C ≠ B)) | |
| 3 | 1, 2 | ax-mp 8 | 1 ⊢ (C ≠ A ↔ C ≠ B) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 = wceq 1642 ≠ wne 2516 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 df-ne 2518 |
| This theorem is referenced by: neeq12i 2528 neeqtri 2537 nulnnn 4556 nchoicelem14 6302 nchoicelem17 6305 |
| Copyright terms: Public domain | W3C validator |