| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nrex | GIF version | ||
| Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrex.1 | ⊢ (x ∈ A → ¬ ψ) |
| Ref | Expression |
|---|---|
| nrex | ⊢ ¬ ∃x ∈ A ψ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrex.1 | . . 3 ⊢ (x ∈ A → ¬ ψ) | |
| 2 | 1 | rgen 2679 | . 2 ⊢ ∀x ∈ A ¬ ψ |
| 3 | ralnex 2624 | . 2 ⊢ (∀x ∈ A ¬ ψ ↔ ¬ ∃x ∈ A ψ) | |
| 4 | 2, 3 | mpbi 199 | 1 ⊢ ¬ ∃x ∈ A ψ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1710 ∀wral 2614 ∃wrex 2615 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2619 df-rex 2620 |
| This theorem is referenced by: rex0 3563 iun0 4022 0nelsuc 4400 addcnul1 4452 nulnnn 4556 0cnelphi 4597 proj1op 4600 proj2op 4601 nenpw1pwlem2 6085 nchoice 6308 fnfreclem2 6318 |
| Copyright terms: Public domain | W3C validator |