| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > orbi1i | GIF version | ||
| Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbi2i.1 | ⊢ (φ ↔ ψ) |
| Ref | Expression |
|---|---|
| orbi1i | ⊢ ((φ ∨ χ) ↔ (ψ ∨ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 376 | . 2 ⊢ ((φ ∨ χ) ↔ (χ ∨ φ)) | |
| 2 | orbi2i.1 | . . 3 ⊢ (φ ↔ ψ) | |
| 3 | 2 | orbi2i 505 | . 2 ⊢ ((χ ∨ φ) ↔ (χ ∨ ψ)) |
| 4 | orcom 376 | . 2 ⊢ ((χ ∨ ψ) ↔ (ψ ∨ χ)) | |
| 5 | 1, 3, 4 | 3bitri 262 | 1 ⊢ ((φ ∨ χ) ↔ (ψ ∨ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: orbi12i 507 orordi 516 3anor 948 3or6 1263 19.45 1878 unass 3420 dfimak2 4298 ssfin 4470 eqtfinrelk 4486 evenoddnnnul 4514 nmembers1lem3 6270 nncdiv3 6277 nchoicelem6 6294 nchoicelem9 6297 nchoicelem18 6306 |
| Copyright terms: Public domain | W3C validator |