| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > orbi2d | GIF version | ||
| Description: Deduction adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bid.1 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| orbi2d | ⊢ (φ → ((θ ∨ ψ) ↔ (θ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bid.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
| 2 | 1 | imbi2d 307 | . 2 ⊢ (φ → ((¬ θ → ψ) ↔ (¬ θ → χ))) |
| 3 | df-or 359 | . 2 ⊢ ((θ ∨ ψ) ↔ (¬ θ → ψ)) | |
| 4 | df-or 359 | . 2 ⊢ ((θ ∨ χ) ↔ (¬ θ → χ)) | |
| 5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (φ → ((θ ∨ ψ) ↔ (θ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: orbi1d 683 orbi12d 690 cad1 1398 eueq2 3010 sbc2or 3054 rexprg 3776 rextpg 3778 clos1basesucg 5884 nc0suc 6217 nmembers1lem3 6270 |
| Copyright terms: Public domain | W3C validator |