| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm2.43i | GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| pm2.43i.1 | ⊢ (φ → (φ → ψ)) |
| Ref | Expression |
|---|---|
| pm2.43i | ⊢ (φ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (φ → φ) | |
| 2 | pm2.43i.1 | . 2 ⊢ (φ → (φ → ψ)) | |
| 3 | 1, 2 | mpd 14 | 1 ⊢ (φ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 8 |
| This theorem is referenced by: sylc 56 pm2.18 102 impbid 183 ibi 232 anidms 626 tbw-bijust 1463 tbw-negdf 1464 equid 1676 equidOLD 1677 hbae 1953 aecom-o 2151 hbae-o 2153 hbequid 2160 equidqe 2173 equid1ALT 2176 ax10from10o 2177 ax11inda 2200 vtoclgaf 2919 vtocl2gaf 2921 vtocl3gaf 2923 elinti 3935 spfinsfincl 4539 copsexg 4607 |
| Copyright terms: Public domain | W3C validator |