| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rabbi | GIF version | ||
| Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2850. (Contributed by NM, 25-Nov-2013.) |
| Ref | Expression |
|---|---|
| rabbi | ⊢ (∀x ∈ A (ψ ↔ χ) ↔ {x ∈ A ∣ ψ} = {x ∈ A ∣ χ}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2463 | . 2 ⊢ (∀x((x ∈ A ∧ ψ) ↔ (x ∈ A ∧ χ)) ↔ {x ∣ (x ∈ A ∧ ψ)} = {x ∣ (x ∈ A ∧ χ)}) | |
| 2 | df-ral 2619 | . . 3 ⊢ (∀x ∈ A (ψ ↔ χ) ↔ ∀x(x ∈ A → (ψ ↔ χ))) | |
| 3 | pm5.32 617 | . . . 4 ⊢ ((x ∈ A → (ψ ↔ χ)) ↔ ((x ∈ A ∧ ψ) ↔ (x ∈ A ∧ χ))) | |
| 4 | 3 | albii 1566 | . . 3 ⊢ (∀x(x ∈ A → (ψ ↔ χ)) ↔ ∀x((x ∈ A ∧ ψ) ↔ (x ∈ A ∧ χ))) |
| 5 | 2, 4 | bitri 240 | . 2 ⊢ (∀x ∈ A (ψ ↔ χ) ↔ ∀x((x ∈ A ∧ ψ) ↔ (x ∈ A ∧ χ))) |
| 6 | df-rab 2623 | . . 3 ⊢ {x ∈ A ∣ ψ} = {x ∣ (x ∈ A ∧ ψ)} | |
| 7 | df-rab 2623 | . . 3 ⊢ {x ∈ A ∣ χ} = {x ∣ (x ∈ A ∧ χ)} | |
| 8 | 6, 7 | eqeq12i 2366 | . 2 ⊢ ({x ∈ A ∣ ψ} = {x ∈ A ∣ χ} ↔ {x ∣ (x ∈ A ∧ ψ)} = {x ∣ (x ∈ A ∧ χ)}) |
| 9 | 1, 5, 8 | 3bitr4i 268 | 1 ⊢ (∀x ∈ A (ψ ↔ χ) ↔ {x ∈ A ∣ ψ} = {x ∈ A ∣ χ}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2614 {crab 2618 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-ral 2619 df-rab 2623 |
| This theorem is referenced by: rabbidva 2850 fnpm 6008 |
| Copyright terms: Public domain | W3C validator |