| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rgenw | GIF version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rgenw.1 | ⊢ φ |
| Ref | Expression |
|---|---|
| rgenw | ⊢ ∀x ∈ A φ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgenw.1 | . . 3 ⊢ φ | |
| 2 | 1 | a1i 10 | . 2 ⊢ (x ∈ A → φ) |
| 3 | 2 | rgen 2679 | 1 ⊢ ∀x ∈ A φ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 1710 ∀wral 2614 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 |
| This theorem depends on definitions: df-bi 177 df-ral 2619 |
| This theorem is referenced by: rgen2w 2682 reuun1 3537 riinrab 4041 evenodddisj 4516 vfinspnn 4541 mpt2eq12 5662 fnmpti 5690 clos10 5887 fnpm 6008 frecxp 6314 |
| Copyright terms: Public domain | W3C validator |