| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rspc2v | GIF version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 | ⊢ (x = A → (φ ↔ χ)) |
| rspc2v.2 | ⊢ (y = B → (χ ↔ ψ)) |
| Ref | Expression |
|---|---|
| rspc2v | ⊢ ((A ∈ C ∧ B ∈ D) → (∀x ∈ C ∀y ∈ D φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 | . 2 ⊢ Ⅎxχ | |
| 2 | nfv 1619 | . 2 ⊢ Ⅎyψ | |
| 3 | rspc2v.1 | . 2 ⊢ (x = A → (φ ↔ χ)) | |
| 4 | rspc2v.2 | . 2 ⊢ (y = B → (χ ↔ ψ)) | |
| 5 | 1, 2, 3, 4 | rspc2 2960 | 1 ⊢ ((A ∈ C ∧ B ∈ D) → (∀x ∈ C ∀y ∈ D φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2614 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-v 2861 |
| This theorem is referenced by: rspc2va 2962 rspc3v 2964 ncfinraise 4481 nnpweq 4523 isorel 5489 isotr 5495 fovcl 5588 caovcld 5622 caovcomg 5624 extd 5923 symd 5924 antid 5929 connexd 5931 |
| Copyright terms: Public domain | W3C validator |