| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbsbc | GIF version | ||
| Description: Show that df-sb 1649 and df-sbc 3047 are equivalent when the class term A in df-sbc 3047 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1649 for proofs involving df-sbc 3047. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbsbc | ⊢ ([y / x]φ ↔ [̣y / x]̣φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2353 | . 2 ⊢ y = y | |
| 2 | dfsbcq2 3049 | . 2 ⊢ (y = y → ([y / x]φ ↔ [̣y / x]̣φ)) | |
| 3 | 1, 2 | ax-mp 8 | 1 ⊢ ([y / x]φ ↔ [̣y / x]̣φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 [wsb 1648 [̣wsbc 3046 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3047 |
| This theorem is referenced by: spsbc 3058 sbcid 3062 sbcco 3068 sbcco2 3069 sbcie2g 3079 eqsbc3 3085 sbcralt 3118 csbid 3143 sbnfc2 3196 csbabg 3197 cbvralcsf 3198 cbvreucsf 3200 cbvrabcsf 3201 |
| Copyright terms: Public domain | W3C validator |