| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simplrl | GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
| Ref | Expression |
|---|---|
| simplrl | ⊢ (((φ ∧ (ψ ∧ χ)) ∧ θ) → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 443 | . 2 ⊢ ((ψ ∧ χ) → ψ) | |
| 2 | 1 | ad2antlr 707 | 1 ⊢ (((φ ∧ (ψ ∧ χ)) ∧ θ) → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: pm2.61da3ne 2596 rmob 3134 preaddccan2 4455 ncfinraise 4481 tfindi 4496 evenodddisj 4516 sfintfin 4532 ncdisjun 6136 |
| Copyright terms: Public domain | W3C validator |