| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > snec | GIF version | ||
| Description: The singleton of an equivalence class. (Contributed by set.mm contributors, 29-Jan-1999.) (Revised by set.mm contributors, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| snec.1 | ⊢ A ∈ V |
| Ref | Expression |
|---|---|
| snec | ⊢ {[A]R} = ({A} / R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snec.1 | . . . 4 ⊢ A ∈ V | |
| 2 | eceq1 5962 | . . . . 5 ⊢ (x = A → [x]R = [A]R) | |
| 3 | 2 | eqeq2d 2364 | . . . 4 ⊢ (x = A → (y = [x]R ↔ y = [A]R)) |
| 4 | 1, 3 | rexsn 3768 | . . 3 ⊢ (∃x ∈ {A}y = [x]R ↔ y = [A]R) |
| 5 | 4 | abbii 2465 | . 2 ⊢ {y ∣ ∃x ∈ {A}y = [x]R} = {y ∣ y = [A]R} |
| 6 | df-qs 5951 | . 2 ⊢ ({A} / R) = {y ∣ ∃x ∈ {A}y = [x]R} | |
| 7 | df-sn 3741 | . 2 ⊢ {[A]R} = {y ∣ y = [A]R} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2384 | 1 ⊢ {[A]R} = ({A} / R) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2615 Vcvv 2859 {csn 3737 [cec 5945 / cqs 5946 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-v 2861 df-sbc 3047 df-sn 3741 df-ima 4727 df-ec 5947 df-qs 5951 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |