| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > spesbc | GIF version | ||
| Description: Existence form of spsbc 3058. (Contributed by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| spesbc | ⊢ ([̣A / x]̣φ → ∃xφ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3055 | . . 3 ⊢ ([̣A / x]̣φ → A ∈ V) | |
| 2 | rspesbca 3126 | . . 3 ⊢ ((A ∈ V ∧ [̣A / x]̣φ) → ∃x ∈ V φ) | |
| 3 | 1, 2 | mpancom 650 | . 2 ⊢ ([̣A / x]̣φ → ∃x ∈ V φ) |
| 4 | rexv 2873 | . 2 ⊢ (∃x ∈ V φ ↔ ∃xφ) | |
| 5 | 3, 4 | sylib 188 | 1 ⊢ ([̣A / x]̣φ → ∃xφ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1541 ∈ wcel 1710 ∃wrex 2615 Vcvv 2859 [̣wsbc 3046 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 |
| This theorem is referenced by: spesbcd 3128 opelopabsb 4697 |
| Copyright terms: Public domain | W3C validator |