| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > syl6eqelr | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| syl6eqelr.1 | ⊢ (φ → B = A) |
| syl6eqelr.2 | ⊢ B ∈ C |
| Ref | Expression |
|---|---|
| syl6eqelr | ⊢ (φ → A ∈ C) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6eqelr.1 | . . 3 ⊢ (φ → B = A) | |
| 2 | 1 | eqcomd 2358 | . 2 ⊢ (φ → A = B) |
| 3 | syl6eqelr.2 | . 2 ⊢ B ∈ C | |
| 4 | 2, 3 | syl6eqel 2441 | 1 ⊢ (φ → A ∈ C) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
| This theorem is referenced by: cnvkexg 4286 p6exg 4290 ssetkex 4294 sikexg 4296 ins2kexg 4305 ins3kexg 4306 0cnelphi 4597 mapprc 6004 enmap1lem5 6073 nenpw1pwlem2 6085 sbthlem3 6205 |
| Copyright terms: Public domain | W3C validator |