| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sylanb | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 | ⊢ (φ ↔ ψ) |
| sylanb.2 | ⊢ ((ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| sylanb | ⊢ ((φ ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 | . . 3 ⊢ (φ ↔ ψ) | |
| 2 | 1 | biimpi 186 | . 2 ⊢ (φ → ψ) |
| 3 | sylanb.2 | . 2 ⊢ ((ψ ∧ χ) → θ) | |
| 4 | 2, 3 | sylan 457 | 1 ⊢ ((φ ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: syl2anb 465 anabsan 786 eqtr2 2371 pm13.181 2589 rmob 3134 sspsstr 3374 disjne 3596 xpcan2 5058 fssres 5238 funbrfvb 5360 fvco 5383 fvimacnvi 5402 ffvresb 5431 leaddc2 6215 lemuc2 6254 |
| Copyright terms: Public domain | W3C validator |