| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sylnibr | GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnibr.1 | ⊢ (φ → ¬ ψ) |
| sylnibr.2 | ⊢ (χ ↔ ψ) |
| Ref | Expression |
|---|---|
| sylnibr | ⊢ (φ → ¬ χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 | . 2 ⊢ (φ → ¬ ψ) | |
| 2 | sylnibr.2 | . . 3 ⊢ (χ ↔ ψ) | |
| 3 | 2 | bicomi 193 | . 2 ⊢ (ψ ↔ χ) |
| 4 | 1, 3 | sylnib 295 | 1 ⊢ (φ → ¬ χ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: ncfinraise 4481 tfinltfin 4501 sfindbl 4530 tfinnn 4534 vfinncvntsp 4549 nnc3n3p1 6278 nnc3n3p2 6279 nnc3p1n3p2 6280 nchoicelem2 6290 |
| Copyright terms: Public domain | W3C validator |