| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > unieq | GIF version | ||
| Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| unieq | ⊢ (A = B → ∪A = ∪B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2808 | . . 3 ⊢ (A = B → (∃x ∈ A y ∈ x ↔ ∃x ∈ B y ∈ x)) | |
| 2 | 1 | abbidv 2467 | . 2 ⊢ (A = B → {y ∣ ∃x ∈ A y ∈ x} = {y ∣ ∃x ∈ B y ∈ x}) |
| 3 | dfuni2 3893 | . 2 ⊢ ∪A = {y ∣ ∃x ∈ A y ∈ x} | |
| 4 | dfuni2 3893 | . 2 ⊢ ∪B = {y ∣ ∃x ∈ B y ∈ x} | |
| 5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → ∪A = ∪B) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2615 ∪cuni 3891 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-uni 3892 |
| This theorem is referenced by: unieqi 3901 unieqd 3902 uniintsn 3963 iununi 4050 pw1equn 4331 pw1eqadj 4332 nnadjoin 4520 pw1fnval 5851 pw1fnf1o 5855 brtcfn 6246 |
| Copyright terms: Public domain | W3C validator |