| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 1oaii | Unicode version | ||
| Description: OML analog to
orthoarguesian law of Godowski/Greechie, Eq. II with
|
| Ref | Expression |
|---|---|
| 1oaii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orabs 120 |
. . . . 5
| |
| 2 | 1oaiii 823 |
. . . . . 6
| |
| 3 | 2 | lor 70 |
. . . . 5
|
| 4 | df-i2 45 |
. . . . . 6
| |
| 5 | ancom 74 |
. . . . . . 7
| |
| 6 | 5 | lor 70 |
. . . . . 6
|
| 7 | 4, 6 | ax-r2 36 |
. . . . 5
|
| 8 | 1, 3, 7 | 3tr2 64 |
. . . 4
|
| 9 | 8 | lan 77 |
. . 3
|
| 10 | omlan 448 |
. . 3
| |
| 11 | 9, 10 | ax-r2 36 |
. 2
|
| 12 | lear 161 |
. 2
| |
| 13 | 11, 12 | bltr 138 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |