| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vded21 | Unicode version | ||
| Description: A 3-variable theorem. Experiment with weak deduction theorem. |
| Ref | Expression |
|---|---|
| 3vded21.1 |
|
| 3vded21.2 |
|
| Ref | Expression |
|---|---|
| 3vded21 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3vded21.2 |
. . . . . . 7
| |
| 2 | df-i0 43 |
. . . . . . 7
| |
| 3 | 1, 2 | lbtr 139 |
. . . . . 6
|
| 4 | 3vded21.1 |
. . . . . . 7
| |
| 5 | df-i0 43 |
. . . . . . . 8
| |
| 6 | 2 | ax-r4 37 |
. . . . . . . . 9
|
| 7 | df-i2 45 |
. . . . . . . . . 10
| |
| 8 | anor3 90 |
. . . . . . . . . . 11
| |
| 9 | 8 | lor 70 |
. . . . . . . . . 10
|
| 10 | 7, 9 | ax-r2 36 |
. . . . . . . . 9
|
| 11 | 6, 10 | 2or 72 |
. . . . . . . 8
|
| 12 | ax-a2 31 |
. . . . . . . 8
| |
| 13 | 5, 11, 12 | 3tr 65 |
. . . . . . 7
|
| 14 | 4, 13 | lbtr 139 |
. . . . . 6
|
| 15 | 3, 14 | ler2an 173 |
. . . . 5
|
| 16 | comor2 462 |
. . . . . . . 8
| |
| 17 | 3 | leror 152 |
. . . . . . . . . . . 12
|
| 18 | ax-a3 32 |
. . . . . . . . . . . . 13
| |
| 19 | oridm 110 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | lor 70 |
. . . . . . . . . . . . 13
|
| 21 | 18, 20 | ax-r2 36 |
. . . . . . . . . . . 12
|
| 22 | 17, 21 | lbtr 139 |
. . . . . . . . . . 11
|
| 23 | 22 | lecom 180 |
. . . . . . . . . 10
|
| 24 | 23 | comcom 453 |
. . . . . . . . 9
|
| 25 | 24 | comcom2 183 |
. . . . . . . 8
|
| 26 | 16, 25 | com2or 483 |
. . . . . . 7
|
| 27 | comid 187 |
. . . . . . . 8
| |
| 28 | 27 | comcom2 183 |
. . . . . . 7
|
| 29 | 26, 28 | fh1 469 |
. . . . . 6
|
| 30 | or0 102 |
. . . . . . 7
| |
| 31 | 16, 25 | fh1 469 |
. . . . . . . . 9
|
| 32 | 31 | ax-r1 35 |
. . . . . . . 8
|
| 33 | dff 101 |
. . . . . . . 8
| |
| 34 | 32, 33 | 2or 72 |
. . . . . . 7
|
| 35 | ax-a2 31 |
. . . . . . . . . 10
| |
| 36 | 35 | ran 78 |
. . . . . . . . 9
|
| 37 | ancom 74 |
. . . . . . . . 9
| |
| 38 | anabs 121 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38 | 3tr 65 |
. . . . . . . 8
|
| 40 | 39 | ax-r5 38 |
. . . . . . 7
|
| 41 | 30, 34, 40 | 3tr2 64 |
. . . . . 6
|
| 42 | 29, 41 | ax-r2 36 |
. . . . 5
|
| 43 | 15, 42 | lbtr 139 |
. . . 4
|
| 44 | 43 | leran 153 |
. . 3
|
| 45 | anabs 121 |
. . 3
| |
| 46 | comor2 462 |
. . . . 5
| |
| 47 | comid 187 |
. . . . . . 7
| |
| 48 | 47 | comcom2 183 |
. . . . . 6
|
| 49 | 23, 48 | com2an 484 |
. . . . 5
|
| 50 | 46, 49 | fh1r 473 |
. . . 4
|
| 51 | ax-a2 31 |
. . . . . . 7
| |
| 52 | 51 | lan 77 |
. . . . . 6
|
| 53 | anabs 121 |
. . . . . 6
| |
| 54 | 52, 53 | ax-r2 36 |
. . . . 5
|
| 55 | an32 83 |
. . . . . 6
| |
| 56 | anass 76 |
. . . . . 6
| |
| 57 | dff 101 |
. . . . . . . . 9
| |
| 58 | 57 | lan 77 |
. . . . . . . 8
|
| 59 | 58 | ax-r1 35 |
. . . . . . 7
|
| 60 | an0 108 |
. . . . . . 7
| |
| 61 | 59, 60 | ax-r2 36 |
. . . . . 6
|
| 62 | 55, 56, 61 | 3tr 65 |
. . . . 5
|
| 63 | 54, 62 | 2or 72 |
. . . 4
|
| 64 | 50, 63 | ax-r2 36 |
. . 3
|
| 65 | 44, 45, 64 | le3tr2 141 |
. 2
|
| 66 | or0 102 |
. 2
| |
| 67 | 65, 66 | lbtr 139 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i0 43 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: 3vded22 818 |
| Copyright terms: Public domain | W3C validator |