| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 3vroa | Unicode version | ||
| Description: OA-like inference rule (requires OM only). |
| Ref | Expression |
|---|---|
| 3vroa.1 |
|
| Ref | Expression |
|---|---|
| 3vroa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i2 45 |
. 2
| |
| 2 | or12 80 |
. . 3
| |
| 3 | oridm 110 |
. . . 4
| |
| 4 | 3 | lor 70 |
. . 3
|
| 5 | le1 146 |
. . . . . . . . . 10
| |
| 6 | 3vroa.1 |
. . . . . . . . . . . 12
| |
| 7 | 6 | ax-r1 35 |
. . . . . . . . . . 11
|
| 8 | lea 160 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | bltr 138 |
. . . . . . . . . 10
|
| 10 | 5, 9 | lebi 145 |
. . . . . . . . 9
|
| 11 | 10 | ran 78 |
. . . . . . . 8
|
| 12 | ancom 74 |
. . . . . . . 8
| |
| 13 | 11, 12 | ax-r2 36 |
. . . . . . 7
|
| 14 | an1 106 |
. . . . . . 7
| |
| 15 | 13, 14, 1 | 3tr 65 |
. . . . . 6
|
| 16 | 15 | lor 70 |
. . . . 5
|
| 17 | 16 | ax-r1 35 |
. . . 4
|
| 18 | le1 146 |
. . . . 5
| |
| 19 | lear 161 |
. . . . . . . 8
| |
| 20 | df-i0 43 |
. . . . . . . . 9
| |
| 21 | anor3 90 |
. . . . . . . . . . 11
| |
| 22 | 21 | ax-r5 38 |
. . . . . . . . . 10
|
| 23 | 22 | ax-r1 35 |
. . . . . . . . 9
|
| 24 | 20, 23 | ax-r2 36 |
. . . . . . . 8
|
| 25 | 19, 6, 24 | le3tr2 141 |
. . . . . . 7
|
| 26 | le1 146 |
. . . . . . 7
| |
| 27 | 25, 26 | lebi 145 |
. . . . . 6
|
| 28 | 10 | u2lemle2 716 |
. . . . . . . . 9
|
| 29 | 28 | lecon 154 |
. . . . . . . 8
|
| 30 | 29 | leran 153 |
. . . . . . 7
|
| 31 | 30 | leror 152 |
. . . . . 6
|
| 32 | 27, 31 | bltr 138 |
. . . . 5
|
| 33 | 18, 32 | lebi 145 |
. . . 4
|
| 34 | 17, 33 | ax-r2 36 |
. . 3
|
| 35 | 2, 4, 34 | 3tr2 64 |
. 2
|
| 36 | 1, 35 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i0 43 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |