| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > comanbn | Unicode version | ||
| Description: Biconditional commutation law. |
| Ref | Expression |
|---|---|
| comanbn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comanb 872 |
. 2
| |
| 2 | conb 122 |
. . . 4
| |
| 3 | conb 122 |
. . . 4
| |
| 4 | 2, 3 | 2an 79 |
. . 3
|
| 5 | 4 | ax-r1 35 |
. 2
|
| 6 | 1, 5 | cbtr 182 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |