| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > d3oa | Unicode version | ||
| Description: Derivation of 3-OA from OA distributive law. |
| Ref | Expression |
|---|---|
| d3oa.1 |
|
| Ref | Expression |
|---|---|
| d3oa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oai1 821 |
. . 3
| |
| 2 | 2oath1i1 827 |
. . . 4
| |
| 3 | lear 161 |
. . . 4
| |
| 4 | 2, 3 | bltr 138 |
. . 3
|
| 5 | 1, 4 | le2or 168 |
. 2
|
| 6 | id 59 |
. . . . 5
| |
| 7 | id 59 |
. . . . 5
| |
| 8 | leid 148 |
. . . . 5
| |
| 9 | df-i1 44 |
. . . . . . 7
| |
| 10 | ax-a1 30 |
. . . . . . . . . 10
| |
| 11 | 10 | ax-r1 35 |
. . . . . . . . 9
|
| 12 | 11 | bile 142 |
. . . . . . . 8
|
| 13 | lear 161 |
. . . . . . . 8
| |
| 14 | 12, 13 | le2or 168 |
. . . . . . 7
|
| 15 | 9, 14 | bltr 138 |
. . . . . 6
|
| 16 | leo 158 |
. . . . . 6
| |
| 17 | 15, 16 | letr 137 |
. . . . 5
|
| 18 | df-i2 45 |
. . . . . . . 8
| |
| 19 | ax-a2 31 |
. . . . . . . 8
| |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . 7
|
| 21 | lea 160 |
. . . . . . . . 9
| |
| 22 | 21, 11 | lbtr 139 |
. . . . . . . 8
|
| 23 | leid 148 |
. . . . . . . 8
| |
| 24 | 22, 23 | le2or 168 |
. . . . . . 7
|
| 25 | 20, 24 | bltr 138 |
. . . . . 6
|
| 26 | 25, 16 | letr 137 |
. . . . 5
|
| 27 | leo 158 |
. . . . . 6
| |
| 28 | 18 | ax-r1 35 |
. . . . . 6
|
| 29 | 27, 28 | lbtr 139 |
. . . . 5
|
| 30 | 6, 7, 8, 17, 26, 29 | ax-oadist 994 |
. . . 4
|
| 31 | 30 | ax-r1 35 |
. . 3
|
| 32 | u12lem 771 |
. . . . . . 7
| |
| 33 | df-i0 43 |
. . . . . . 7
| |
| 34 | 32, 33 | ax-r2 36 |
. . . . . 6
|
| 35 | 10 | ax-r5 38 |
. . . . . . 7
|
| 36 | 35 | ax-r1 35 |
. . . . . 6
|
| 37 | 34, 36 | ax-r2 36 |
. . . . 5
|
| 38 | d3oa.1 |
. . . . . 6
| |
| 39 | 38 | ax-r1 35 |
. . . . 5
|
| 40 | 37, 39 | ax-r2 36 |
. . . 4
|
| 41 | 40 | lan 77 |
. . 3
|
| 42 | 31, 41 | ax-r2 36 |
. 2
|
| 43 | oridm 110 |
. 2
| |
| 44 | 5, 42, 43 | le3tr2 141 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 ax-oadist 994 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: d4oa 996 |
| Copyright terms: Public domain | W3C validator |