| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > gomaex3 | Unicode version | ||
| Description: Proof of Mayet Example 3 from 6-variable Godowski equation. R. Mayet, "Equational bases for some varieties of orthomodular lattices related to states," Algebra Universalis 23 (1986), 167-195. |
| Ref | Expression |
|---|---|
| gomaex3.1 |
|
| gomaex3.2 |
|
| gomaex3.3 |
|
| gomaex3.5 |
|
| gomaex3.6 |
|
| gomaex3.8 |
|
| gomaex3.9 |
|
| gomaex3.10 |
|
| gomaex3.11 |
|
| gomaex3.12 |
|
| gomaex3.14 |
|
| gomaex3.16 |
|
| gomaex3.18 |
|
| gomaex3.20 |
|
| gomaex3.22 |
|
| Ref | Expression |
|---|---|
| gomaex3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 |
. . . 4
| |
| 2 | ax-a2 31 |
. . . . . 6
| |
| 3 | gomaex3.9 |
. . . . . . . . . 10
| |
| 4 | 3 | con2 67 |
. . . . . . . . 9
|
| 5 | gomaex3.10 |
. . . . . . . . 9
| |
| 6 | 4, 5 | ud1lem0ab 257 |
. . . . . . . 8
|
| 7 | ax-a1 30 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-r2 36 |
. . . . . . 7
|
| 9 | gomaex3.11 |
. . . . . . . 8
| |
| 10 | 6 | ax-r4 37 |
. . . . . . . . 9
|
| 11 | 10 | ran 78 |
. . . . . . . 8
|
| 12 | 9, 11 | ax-r2 36 |
. . . . . . 7
|
| 13 | 8, 12 | 2or 72 |
. . . . . 6
|
| 14 | 2, 13 | ax-r2 36 |
. . . . 5
|
| 15 | 14 | ax-r1 35 |
. . . 4
|
| 16 | 1, 15 | ax-r2 36 |
. . 3
|
| 17 | 16 | lan 77 |
. 2
|
| 18 | gomaex3.1 |
. . 3
| |
| 19 | gomaex3.2 |
. . 3
| |
| 20 | gomaex3.3 |
. . 3
| |
| 21 | gomaex3.5 |
. . 3
| |
| 22 | gomaex3.6 |
. . 3
| |
| 23 | gomaex3.8 |
. . 3
| |
| 24 | gomaex3.12 |
. . 3
| |
| 25 | id 59 |
. . 3
| |
| 26 | gomaex3.14 |
. . 3
| |
| 27 | id 59 |
. . 3
| |
| 28 | gomaex3.16 |
. . 3
| |
| 29 | id 59 |
. . 3
| |
| 30 | gomaex3.18 |
. . 3
| |
| 31 | id 59 |
. . 3
| |
| 32 | gomaex3.20 |
. . 3
| |
| 33 | id 59 |
. . 3
| |
| 34 | gomaex3.22 |
. . 3
| |
| 35 | id 59 |
. . 3
| |
| 36 | 18, 19, 20, 21, 22, 23, 3, 5, 9, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 | gomaex3lem10 923 |
. 2
|
| 37 | 17, 36 | bltr 138 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |