![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > gomaex3h4 | Unicode version |
Description: Hypothesis for Godowski 6-var -> Mayet Example 3. |
Ref | Expression |
---|---|
gomaex3h4.11 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3h4.15 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3h4.16 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
gomaex3h4 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gomaex3h4.11 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | lear 161 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bltr 138 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | lecon 154 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | gomaex3h4.15 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | gomaex3h4.16 |
. . 3
![]() ![]() ![]() | |
7 | 6 | ax-r4 37 |
. 2
![]() ![]() ![]() ![]() ![]() |
8 | 4, 5, 7 | le3tr1 140 |
1
![]() ![]() ![]() ![]() |
Colors of variables: term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-le1 130 df-le2 131 |
This theorem is referenced by: gomaex3lem5 918 |
Copyright terms: Public domain | W3C validator |