![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > gomaex3lem9 | Unicode version |
Description: Lemma for Godowski 6-var -> Mayet Example 3. |
Ref | Expression |
---|---|
gomaex3lem5.1 |
![]() ![]() ![]() ![]() |
gomaex3lem5.2 |
![]() ![]() ![]() ![]() |
gomaex3lem5.3 |
![]() ![]() ![]() ![]() |
gomaex3lem5.5 |
![]() ![]() ![]() ![]() |
gomaex3lem5.6 |
![]() ![]() ![]() ![]() |
gomaex3lem5.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.10 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.11 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.12 |
![]() ![]() ![]() |
gomaex3lem5.13 |
![]() ![]() ![]() |
gomaex3lem5.14 |
![]() ![]() ![]() |
gomaex3lem5.15 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.16 |
![]() ![]() ![]() |
gomaex3lem5.17 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.18 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.19 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.20 |
![]() ![]() ![]() ![]() |
gomaex3lem5.21 |
![]() ![]() ![]() |
gomaex3lem5.22 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gomaex3lem5.23 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
gomaex3lem9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 74 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | gomaex3lem5.9 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | gomaex3lem4 917 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | df2le2 136 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | ax-r1 35 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | lan 77 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | an12 81 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 6, 7 | 3tr 65 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | gomaex3lem5.1 |
. . 3
![]() ![]() ![]() ![]() | |
10 | gomaex3lem5.2 |
. . 3
![]() ![]() ![]() ![]() | |
11 | gomaex3lem5.3 |
. . 3
![]() ![]() ![]() ![]() | |
12 | gomaex3lem5.5 |
. . 3
![]() ![]() ![]() ![]() | |
13 | gomaex3lem5.6 |
. . 3
![]() ![]() ![]() ![]() | |
14 | gomaex3lem5.8 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | gomaex3lem5.10 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | gomaex3lem5.11 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | gomaex3lem5.12 |
. . 3
![]() ![]() ![]() | |
18 | gomaex3lem5.13 |
. . 3
![]() ![]() ![]() | |
19 | gomaex3lem5.14 |
. . 3
![]() ![]() ![]() | |
20 | gomaex3lem5.15 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | gomaex3lem5.16 |
. . 3
![]() ![]() ![]() | |
22 | gomaex3lem5.17 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | gomaex3lem5.18 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | gomaex3lem5.19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
25 | gomaex3lem5.20 |
. . 3
![]() ![]() ![]() ![]() | |
26 | gomaex3lem5.21 |
. . 3
![]() ![]() ![]() | |
27 | gomaex3lem5.22 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
28 | gomaex3lem5.23 |
. . 3
![]() ![]() ![]() | |
29 | 9, 10, 11, 12, 13, 14, 2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | gomaex3lem8 921 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 8, 29 | bltr 138 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: gomaex3lem10 923 |
Copyright terms: Public domain | W3C validator |