| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > govar | Unicode version | ||
| Description: Lemma for converting n-variable Godowski equations to 2n-variable equations. |
| Ref | Expression |
|---|---|
| govar.1 |
|
| govar.2 |
|
| Ref | Expression |
|---|---|
| govar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i2 45 |
. . . 4
| |
| 2 | 1 | lan 77 |
. . 3
|
| 3 | ax-a2 31 |
. . . . 5
| |
| 4 | 3 | ran 78 |
. . . 4
|
| 5 | govar.2 |
. . . . . . . 8
| |
| 6 | 5 | lecom 180 |
. . . . . . 7
|
| 7 | 6 | comcom7 460 |
. . . . . 6
|
| 8 | govar.1 |
. . . . . . . . . . 11
| |
| 9 | 8 | lecom 180 |
. . . . . . . . . 10
|
| 10 | 9 | comcom7 460 |
. . . . . . . . 9
|
| 11 | 10 | comcom 453 |
. . . . . . . 8
|
| 12 | 11 | comcom2 183 |
. . . . . . 7
|
| 13 | 12, 6 | com2an 484 |
. . . . . 6
|
| 14 | 7, 13 | com2or 483 |
. . . . 5
|
| 15 | 14, 11 | fh2r 474 |
. . . 4
|
| 16 | 4, 15 | ax-r2 36 |
. . 3
|
| 17 | coman1 185 |
. . . . . . 7
| |
| 18 | 17 | comcom7 460 |
. . . . . 6
|
| 19 | coman2 186 |
. . . . . . 7
| |
| 20 | 19 | comcom7 460 |
. . . . . 6
|
| 21 | 18, 20 | fh2c 477 |
. . . . 5
|
| 22 | dff 101 |
. . . . . . . . 9
| |
| 23 | 22 | ran 78 |
. . . . . . . 8
|
| 24 | 23 | ax-r1 35 |
. . . . . . 7
|
| 25 | anass 76 |
. . . . . . 7
| |
| 26 | an0r 109 |
. . . . . . 7
| |
| 27 | 24, 25, 26 | 3tr2 64 |
. . . . . 6
|
| 28 | 27 | lor 70 |
. . . . 5
|
| 29 | or0 102 |
. . . . 5
| |
| 30 | 21, 28, 29 | 3tr 65 |
. . . 4
|
| 31 | 30 | lor 70 |
. . 3
|
| 32 | 2, 16, 31 | 3tr 65 |
. 2
|
| 33 | lea 160 |
. . 3
| |
| 34 | lear 161 |
. . 3
| |
| 35 | 33, 34 | le2or 168 |
. 2
|
| 36 | 32, 35 | bltr 138 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: gon2n 898 |
| Copyright terms: Public domain | W3C validator |