| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > i0cmtrcom | Unicode version | ||
| Description: Commutator element |
| Ref | Expression |
|---|---|
| i0cmtrcom.1 |
|
| Ref | Expression |
|---|---|
| i0cmtrcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lea 160 |
. . . . . 6
| |
| 2 | lea 160 |
. . . . . 6
| |
| 3 | 1, 2 | lel2or 170 |
. . . . 5
|
| 4 | 3 | df-le2 131 |
. . . 4
|
| 5 | df-cmtr 134 |
. . . . . . . 8
| |
| 6 | 5 | lor 70 |
. . . . . . 7
|
| 7 | 6 | ax-r1 35 |
. . . . . 6
|
| 8 | ax-a2 31 |
. . . . . . 7
| |
| 9 | ax-a2 31 |
. . . . . . . . . 10
| |
| 10 | lea 160 |
. . . . . . . . . . . 12
| |
| 11 | lea 160 |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | lel2or 170 |
. . . . . . . . . . 11
|
| 13 | 12 | df-le2 131 |
. . . . . . . . . 10
|
| 14 | 9, 13 | ax-r2 36 |
. . . . . . . . 9
|
| 15 | 14 | lor 70 |
. . . . . . . 8
|
| 16 | 15 | ax-r1 35 |
. . . . . . 7
|
| 17 | or12 80 |
. . . . . . 7
| |
| 18 | 8, 16, 17 | 3tr 65 |
. . . . . 6
|
| 19 | df-i0 43 |
. . . . . 6
| |
| 20 | 7, 18, 19 | 3tr1 63 |
. . . . 5
|
| 21 | i0cmtrcom.1 |
. . . . 5
| |
| 22 | 20, 21 | ax-r2 36 |
. . . 4
|
| 23 | 4, 22 | lem3.1 443 |
. . 3
|
| 24 | 23 | ax-r1 35 |
. 2
|
| 25 | 24 | df-c1 132 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i0 43 df-le1 130 df-le2 131 df-c1 132 df-cmtr 134 |
| This theorem is referenced by: 3vded3 819 |
| Copyright terms: Public domain | W3C validator |