| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > i3id | Unicode version | ||
| Description: Identity for Kalmbach implication. |
| Ref | Expression |
|---|---|
| i3id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 |
. . . . . . . 8
| |
| 2 | dff 101 |
. . . . . . . . 9
| |
| 3 | 2 | ax-r1 35 |
. . . . . . . 8
|
| 4 | 1, 3 | ax-r2 36 |
. . . . . . 7
|
| 5 | anidm 111 |
. . . . . . 7
| |
| 6 | 4, 5 | 2or 72 |
. . . . . 6
|
| 7 | ax-a2 31 |
. . . . . 6
| |
| 8 | 6, 7 | ax-r2 36 |
. . . . 5
|
| 9 | or0 102 |
. . . . 5
| |
| 10 | 8, 9 | ax-r2 36 |
. . . 4
|
| 11 | ax-a2 31 |
. . . . . . 7
| |
| 12 | df-t 41 |
. . . . . . . 8
| |
| 13 | 12 | ax-r1 35 |
. . . . . . 7
|
| 14 | 11, 13 | ax-r2 36 |
. . . . . 6
|
| 15 | 14 | lan 77 |
. . . . 5
|
| 16 | an1 106 |
. . . . 5
| |
| 17 | 15, 16 | ax-r2 36 |
. . . 4
|
| 18 | 10, 17 | 2or 72 |
. . 3
|
| 19 | 18, 11 | ax-r2 36 |
. 2
|
| 20 | df-i3 46 |
. 2
| |
| 21 | 19, 20, 12 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i3 46 |
| This theorem is referenced by: bina1 282 bina2 283 ska14 514 i3orcom 525 i3ancom 526 i3th4 546 |
| Copyright terms: Public domain | W3C validator |