| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mlaoml | Unicode version | ||
| Description: Mladen's OML. |
| Ref | Expression |
|---|---|
| mlaoml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | u1lembi 720 |
. . . . 5
| |
| 2 | 1 | ran 78 |
. . . 4
|
| 3 | mlalem 832 |
. . . 4
| |
| 4 | 2, 3 | bltr 138 |
. . 3
|
| 5 | ancom 74 |
. . . . . 6
| |
| 6 | 5 | ran 78 |
. . . . 5
|
| 7 | an32 83 |
. . . . 5
| |
| 8 | u1lembi 720 |
. . . . . 6
| |
| 9 | 8 | ran 78 |
. . . . 5
|
| 10 | 6, 7, 9 | 3tr 65 |
. . . 4
|
| 11 | mlalem 832 |
. . . 4
| |
| 12 | 10, 11 | bltr 138 |
. . 3
|
| 13 | 4, 12 | le2an 169 |
. 2
|
| 14 | an12 81 |
. . . . . 6
| |
| 15 | ancom 74 |
. . . . . . . 8
| |
| 16 | 15 | ran 78 |
. . . . . . 7
|
| 17 | id 59 |
. . . . . . 7
| |
| 18 | anandi 114 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | 3tr1 63 |
. . . . . 6
|
| 20 | anass 76 |
. . . . . 6
| |
| 21 | 14, 19, 20 | 3tr1 63 |
. . . . 5
|
| 22 | 21 | ran 78 |
. . . 4
|
| 23 | anandir 115 |
. . . 4
| |
| 24 | an32 83 |
. . . 4
| |
| 25 | 22, 23, 24 | 3tr2 64 |
. . 3
|
| 26 | anass 76 |
. . 3
| |
| 27 | u1lembi 720 |
. . . 4
| |
| 28 | 1, 27 | 2an 79 |
. . 3
|
| 29 | 25, 26, 28 | 3tr 65 |
. 2
|
| 30 | u1lembi 720 |
. 2
| |
| 31 | 13, 29, 30 | le3tr2 141 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: eqtr4 834 mlaconj4 844 |
| Copyright terms: Public domain | W3C validator |