| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa3-1lem | Unicode version | ||
| Description: Lemma for 3-OA(1). Equivalence with substitution into 6-OA dual. |
| Ref | Expression |
|---|---|
| oa3-1lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 |
. 2
| |
| 2 | an1 106 |
. 2
| |
| 3 | ax-a2 31 |
. . 3
| |
| 4 | or0 102 |
. . 3
| |
| 5 | ancom 74 |
. . . . . . . . 9
| |
| 6 | an0 108 |
. . . . . . . . 9
| |
| 7 | 5, 6 | ax-r2 36 |
. . . . . . . 8
|
| 8 | ancom 74 |
. . . . . . . . 9
| |
| 9 | an1 106 |
. . . . . . . . 9
| |
| 10 | 8, 9 | ax-r2 36 |
. . . . . . . 8
|
| 11 | 7, 10 | 2or 72 |
. . . . . . 7
|
| 12 | ax-a2 31 |
. . . . . . 7
| |
| 13 | or0 102 |
. . . . . . 7
| |
| 14 | 11, 12, 13 | 3tr 65 |
. . . . . 6
|
| 15 | 14 | ax-r5 38 |
. . . . 5
|
| 16 | ax-a2 31 |
. . . . . . . 8
| |
| 17 | ancom 74 |
. . . . . . . . . 10
| |
| 18 | an1 106 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | ax-r2 36 |
. . . . . . . . 9
|
| 20 | ancom 74 |
. . . . . . . . . 10
| |
| 21 | an0 108 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | ax-r2 36 |
. . . . . . . . 9
|
| 23 | 19, 22 | 2or 72 |
. . . . . . . 8
|
| 24 | or0 102 |
. . . . . . . 8
| |
| 25 | 16, 23, 24 | 3tr 65 |
. . . . . . 7
|
| 26 | 25 | ran 78 |
. . . . . 6
|
| 27 | 26 | lor 70 |
. . . . 5
|
| 28 | 15, 27 | ax-r2 36 |
. . . 4
|
| 29 | 28 | lan 77 |
. . 3
|
| 30 | 3, 4, 29 | 3tr 65 |
. 2
|
| 31 | 1, 2, 30 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |