QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  oa4dtoc Unicode version

Theorem oa4dtoc 969
Description: Derivation of 4-OA law variant.
Hypothesis
Ref Expression
oa4dtoc.1 (b ^ (((a ^ b) v ((a ->1 d) ^ (b ->1 d))) v (((a ^ c) v ((a ->1 d) ^ (c ->1 d))) ^ ((b ^ c) v ((b ->1 d) ^ (c ->1 d)))))) =< (a' ->1 d)
Assertion
Ref Expression
oa4dtoc (a' ^ (a v (b ^ (((a ^ b) v ((a ->1 d) ^ (b ->1 d))) v (((a ^ c) v ((a ->1 d) ^ (c ->1 d))) ^ ((b ^ c) v ((b ->1 d) ^ (c ->1 d)))))))) =< d

Proof of Theorem oa4dtoc
StepHypRef Expression
1 oa4dtoc.1 . 2 (b ^ (((a ^ b) v ((a ->1 d) ^ (b ->1 d))) v (((a ^ c) v ((a ->1 d) ^ (c ->1 d))) ^ ((b ^ c) v ((b ->1 d) ^ (c ->1 d)))))) =< (a' ->1 d)
21oatr 928 1 (a' ^ (a v (b ^ (((a ^ b) v ((a ->1 d) ^ (b ->1 d))) v (((a ^ c) v ((a ->1 d) ^ (c ->1 d))) ^ ((b ^ c) v ((b ->1 d) ^ (c ->1 d)))))))) =< d
Colors of variables: term
Syntax hints:   =< wle 2  'wn 4   v wo 6   ^ wa 7   ->1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator