| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa6v4v | Unicode version | ||
| Description: 6-variable OA to 4-variable OA. |
| Ref | Expression |
|---|---|
| oa6v4v.1 |
|
| oa6v4v.2 |
|
| oa6v4v.3 |
|
| Ref | Expression |
|---|---|
| oa6v4v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa6v4v.1 |
. 2
| |
| 2 | oa6v4v.2 |
. . . . . 6
| |
| 3 | oa6v4v.3 |
. . . . . 6
| |
| 4 | 2, 3 | 2or 72 |
. . . . 5
|
| 5 | or0r 103 |
. . . . 5
| |
| 6 | 4, 5 | ax-r2 36 |
. . . 4
|
| 7 | 6 | lan 77 |
. . 3
|
| 8 | an1 106 |
. . 3
| |
| 9 | 7, 8 | ax-r2 36 |
. 2
|
| 10 | 2 | lor 70 |
. . . . . . . . . . 11
|
| 11 | or0 102 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | ax-r2 36 |
. . . . . . . . . 10
|
| 13 | 3 | lor 70 |
. . . . . . . . . . 11
|
| 14 | or1 104 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | ax-r2 36 |
. . . . . . . . . 10
|
| 16 | 12, 15 | 2an 79 |
. . . . . . . . 9
|
| 17 | an1 106 |
. . . . . . . . 9
| |
| 18 | 16, 17 | ax-r2 36 |
. . . . . . . 8
|
| 19 | 2 | lor 70 |
. . . . . . . . . . 11
|
| 20 | or0 102 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | ax-r2 36 |
. . . . . . . . . 10
|
| 22 | 3 | lor 70 |
. . . . . . . . . . 11
|
| 23 | or1 104 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | ax-r2 36 |
. . . . . . . . . 10
|
| 25 | 21, 24 | 2an 79 |
. . . . . . . . 9
|
| 26 | an1 106 |
. . . . . . . . 9
| |
| 27 | 25, 26 | ax-r2 36 |
. . . . . . . 8
|
| 28 | 18, 27 | 2or 72 |
. . . . . . 7
|
| 29 | 28 | lan 77 |
. . . . . 6
|
| 30 | an32 83 |
. . . . . . 7
| |
| 31 | anidm 111 |
. . . . . . . 8
| |
| 32 | 31 | ran 78 |
. . . . . . 7
|
| 33 | 30, 32 | ax-r2 36 |
. . . . . 6
|
| 34 | 29, 33 | ax-r2 36 |
. . . . 5
|
| 35 | 34 | lor 70 |
. . . 4
|
| 36 | 35 | lan 77 |
. . 3
|
| 37 | 36 | lor 70 |
. 2
|
| 38 | 1, 9, 37 | le3tr2 141 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: oa64v 1031 |
| Copyright terms: Public domain | W3C validator |