| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oadist2a | Unicode version | ||
| Description: Distributive inference derived from OA. |
| Ref | Expression |
|---|---|
| oadist2a.1 |
|
| Ref | Expression |
|---|---|
| oadist2a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 |
. . 3
| |
| 2 | 1 | lan 77 |
. 2
|
| 3 | ax-a2 31 |
. . . . . . 7
| |
| 4 | oadist2a.1 |
. . . . . . 7
| |
| 5 | 3, 4 | bltr 138 |
. . . . . 6
|
| 6 | 5 | lelan 167 |
. . . . 5
|
| 7 | df-i0 43 |
. . . . . . . 8
| |
| 8 | 7 | lan 77 |
. . . . . . 7
|
| 9 | oath1 1004 |
. . . . . . 7
| |
| 10 | 8, 9 | ax-r2 36 |
. . . . . 6
|
| 11 | leo 158 |
. . . . . . 7
| |
| 12 | df-i2 45 |
. . . . . . . 8
| |
| 13 | 12 | ax-r1 35 |
. . . . . . 7
|
| 14 | 11, 13 | lbtr 139 |
. . . . . 6
|
| 15 | 10, 14 | bltr 138 |
. . . . 5
|
| 16 | 6, 15 | letr 137 |
. . . 4
|
| 17 | 16 | distlem 188 |
. . 3
|
| 18 | ax-a2 31 |
. . 3
| |
| 19 | 17, 18 | ax-r2 36 |
. 2
|
| 20 | 2, 19 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-3oa 998 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i0 43 df-i1 44 df-i2 45 df-le1 130 df-le2 131 |
| This theorem is referenced by: oadist2b 1008 oadist2 1009 |
| Copyright terms: Public domain | W3C validator |