QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  oasr Unicode version

Theorem oasr 926
Description: Reverse of oas 925 lemma for studying the orthoarguesian law.
Hypothesis
Ref Expression
oasr.1 ((a ->1 c) ^ (a v b)) =< c
Assertion
Ref Expression
oasr (a' ^ (a v b)) =< c

Proof of Theorem oasr
StepHypRef Expression
1 u1lem9b 778 . . 3 a' =< (a ->1 c)
21leran 153 . 2 (a' ^ (a v b)) =< ((a ->1 c) ^ (a v b))
3 oasr.1 . 2 ((a ->1 c) ^ (a v b)) =< c
42, 3letr 137 1 (a' ^ (a v b)) =< c
Colors of variables: term
Syntax hints:   =< wle 2  'wn 4   v wo 6   ^ wa 7   ->1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator