| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > orbi | Unicode version | ||
| Description: Disjunction of biconditionals. |
| Ref | Expression |
|---|---|
| orbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfb 94 |
. . 3
| |
| 2 | dfb 94 |
. . 3
| |
| 3 | 1, 2 | 2or 72 |
. 2
|
| 4 | ax-a2 31 |
. 2
| |
| 5 | ax-a3 32 |
. . 3
| |
| 6 | ancom 74 |
. . . . . . . 8
| |
| 7 | 6 | lor 70 |
. . . . . . 7
|
| 8 | imp3 841 |
. . . . . . . 8
| |
| 9 | 8 | ax-r1 35 |
. . . . . . 7
|
| 10 | 7, 9 | ax-r2 36 |
. . . . . 6
|
| 11 | 10 | ax-r5 38 |
. . . . 5
|
| 12 | ax-a3 32 |
. . . . 5
| |
| 13 | df-i1 44 |
. . . . . . . 8
| |
| 14 | lear 161 |
. . . . . . . . . . 11
| |
| 15 | leo 158 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | letr 137 |
. . . . . . . . . 10
|
| 17 | 16 | lecom 180 |
. . . . . . . . 9
|
| 18 | 17 | comcom 453 |
. . . . . . . 8
|
| 19 | 13, 18 | bctr 181 |
. . . . . . 7
|
| 20 | comi12 707 |
. . . . . . 7
| |
| 21 | 19, 20 | fh4rc 482 |
. . . . . 6
|
| 22 | 13 | ax-r5 38 |
. . . . . . . 8
|
| 23 | ax-a2 31 |
. . . . . . . 8
| |
| 24 | 16 | df-le2 131 |
. . . . . . . 8
|
| 25 | 22, 23, 24 | 3tr 65 |
. . . . . . 7
|
| 26 | 25 | lan 77 |
. . . . . 6
|
| 27 | 21, 26 | ax-r2 36 |
. . . . 5
|
| 28 | 11, 12, 27 | 3tr2 64 |
. . . 4
|
| 29 | 28 | lor 70 |
. . 3
|
| 30 | df-i2 45 |
. . . . . . . 8
| |
| 31 | 30 | ax-r5 38 |
. . . . . . 7
|
| 32 | ax-a3 32 |
. . . . . . 7
| |
| 33 | 31, 32 | ax-r2 36 |
. . . . . 6
|
| 34 | lear 161 |
. . . . . . . . 9
| |
| 35 | leo 158 |
. . . . . . . . 9
| |
| 36 | 34, 35 | letr 137 |
. . . . . . . 8
|
| 37 | 36 | lecom 180 |
. . . . . . 7
|
| 38 | 37 | comcom 453 |
. . . . . 6
|
| 39 | 33, 38 | bctr 181 |
. . . . 5
|
| 40 | lea 160 |
. . . . . . . . . . 11
| |
| 41 | 40, 35 | letr 137 |
. . . . . . . . . 10
|
| 42 | 41 | lecom 180 |
. . . . . . . . 9
|
| 43 | 42 | comcom 453 |
. . . . . . . 8
|
| 44 | anor1 88 |
. . . . . . . 8
| |
| 45 | 43, 44 | cbtr 182 |
. . . . . . 7
|
| 46 | 45 | comcom7 460 |
. . . . . 6
|
| 47 | 33, 46 | bctr 181 |
. . . . 5
|
| 48 | 39, 47 | fh4 472 |
. . . 4
|
| 49 | 30 | lor 70 |
. . . . . . . 8
|
| 50 | leo 158 |
. . . . . . . . . 10
| |
| 51 | 34, 50 | letr 137 |
. . . . . . . . 9
|
| 52 | 51 | df-le2 131 |
. . . . . . . 8
|
| 53 | 49, 52 | ax-r2 36 |
. . . . . . 7
|
| 54 | 53 | ax-r5 38 |
. . . . . 6
|
| 55 | ax-a3 32 |
. . . . . 6
| |
| 56 | ax-a2 31 |
. . . . . . . 8
| |
| 57 | orordi 112 |
. . . . . . . 8
| |
| 58 | df-i2 45 |
. . . . . . . . 9
| |
| 59 | 58, 30 | 2or 72 |
. . . . . . . 8
|
| 60 | 56, 57, 59 | 3tr1 63 |
. . . . . . 7
|
| 61 | 32, 60 | ax-r2 36 |
. . . . . 6
|
| 62 | 54, 55, 61 | 3tr2 64 |
. . . . 5
|
| 63 | or12 80 |
. . . . . 6
| |
| 64 | ax-a2 31 |
. . . . . . 7
| |
| 65 | orordi 112 |
. . . . . . 7
| |
| 66 | df-i1 44 |
. . . . . . . . 9
| |
| 67 | ancom 74 |
. . . . . . . . . 10
| |
| 68 | 67 | lor 70 |
. . . . . . . . 9
|
| 69 | 66, 68 | ax-r2 36 |
. . . . . . . 8
|
| 70 | 13, 69 | 2or 72 |
. . . . . . 7
|
| 71 | 64, 65, 70 | 3tr1 63 |
. . . . . 6
|
| 72 | 63, 71 | ax-r2 36 |
. . . . 5
|
| 73 | 62, 72 | 2an 79 |
. . . 4
|
| 74 | 48, 73 | ax-r2 36 |
. . 3
|
| 75 | 5, 29, 74 | 3tr 65 |
. 2
|
| 76 | 3, 4, 75 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: orbile 843 |
| Copyright terms: Public domain | W3C validator |