| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > test | Unicode version | ||
| Description: Part of an attempt to crack a potential Kalmbach axiom. |
| Ref | Expression |
|---|---|
| test |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oran3 93 |
. . . . 5
| |
| 2 | 1 | lor 70 |
. . . 4
|
| 3 | 2 | ran 78 |
. . 3
|
| 4 | 3 | ax-r5 38 |
. 2
|
| 5 | comor1 461 |
. . . . . . 7
| |
| 6 | 5 | comcom2 183 |
. . . . . 6
|
| 7 | comor2 462 |
. . . . . . 7
| |
| 8 | 7 | comcom7 460 |
. . . . . 6
|
| 9 | 6, 8 | com2an 484 |
. . . . 5
|
| 10 | 6, 8 | com2or 483 |
. . . . . 6
|
| 11 | 5, 10 | com2an 484 |
. . . . 5
|
| 12 | 9, 11 | com2or 483 |
. . . 4
|
| 13 | 5, 8 | com2or 483 |
. . . . 5
|
| 14 | 6, 13 | com2an 484 |
. . . 4
|
| 15 | 12, 14 | fh4r 476 |
. . 3
|
| 16 | ax-a3 32 |
. . . . . . 7
| |
| 17 | 16 | ax-r1 35 |
. . . . . 6
|
| 18 | ax-a2 31 |
. . . . . . 7
| |
| 19 | anor2 89 |
. . . . . . . . . . 11
| |
| 20 | 19 | lor 70 |
. . . . . . . . . 10
|
| 21 | df-t 41 |
. . . . . . . . . . 11
| |
| 22 | 21 | ax-r1 35 |
. . . . . . . . . 10
|
| 23 | 20, 22 | ax-r2 36 |
. . . . . . . . 9
|
| 24 | 23 | lor 70 |
. . . . . . . 8
|
| 25 | or1 104 |
. . . . . . . 8
| |
| 26 | 24, 25 | ax-r2 36 |
. . . . . . 7
|
| 27 | 18, 26 | ax-r2 36 |
. . . . . 6
|
| 28 | 17, 27 | ax-r2 36 |
. . . . 5
|
| 29 | ax-a3 32 |
. . . . . . 7
| |
| 30 | 29 | ax-r1 35 |
. . . . . 6
|
| 31 | ax-a2 31 |
. . . . . . . . 9
| |
| 32 | leor 159 |
. . . . . . . . . . 11
| |
| 33 | 32 | lelan 167 |
. . . . . . . . . 10
|
| 34 | 33 | df-le2 131 |
. . . . . . . . 9
|
| 35 | 31, 34 | ax-r2 36 |
. . . . . . . 8
|
| 36 | 35 | ax-r5 38 |
. . . . . . 7
|
| 37 | coman1 185 |
. . . . . . . . . 10
| |
| 38 | 37 | comcom7 460 |
. . . . . . . . 9
|
| 39 | comor1 461 |
. . . . . . . . . . 11
| |
| 40 | 39 | comcom7 460 |
. . . . . . . . . . . 12
|
| 41 | comor2 462 |
. . . . . . . . . . . 12
| |
| 42 | 40, 41 | com2or 483 |
. . . . . . . . . . 11
|
| 43 | 39, 42 | com2an 484 |
. . . . . . . . . 10
|
| 44 | 43 | comcom 453 |
. . . . . . . . 9
|
| 45 | 38, 44 | fh3 471 |
. . . . . . . 8
|
| 46 | ax-a2 31 |
. . . . . . . . . 10
| |
| 47 | oml 445 |
. . . . . . . . . 10
| |
| 48 | 46, 47 | ax-r2 36 |
. . . . . . . . 9
|
| 49 | or12 80 |
. . . . . . . . . 10
| |
| 50 | ax-a3 32 |
. . . . . . . . . . . 12
| |
| 51 | 50 | ax-r1 35 |
. . . . . . . . . . 11
|
| 52 | orabs 120 |
. . . . . . . . . . . 12
| |
| 53 | 52 | ax-r5 38 |
. . . . . . . . . . 11
|
| 54 | 51, 53 | ax-r2 36 |
. . . . . . . . . 10
|
| 55 | 49, 54 | ax-r2 36 |
. . . . . . . . 9
|
| 56 | 48, 55 | 2an 79 |
. . . . . . . 8
|
| 57 | 45, 56 | ax-r2 36 |
. . . . . . 7
|
| 58 | 36, 57 | ax-r2 36 |
. . . . . 6
|
| 59 | 30, 58 | ax-r2 36 |
. . . . 5
|
| 60 | 28, 59 | 2an 79 |
. . . 4
|
| 61 | ancom 74 |
. . . . 5
| |
| 62 | an1 106 |
. . . . 5
| |
| 63 | 61, 62 | ax-r2 36 |
. . . 4
|
| 64 | 60, 63 | ax-r2 36 |
. . 3
|
| 65 | 15, 64 | ax-r2 36 |
. 2
|
| 66 | 4, 65 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |