QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  test Unicode version

Theorem test 802
Description: Part of an attempt to crack a potential Kalmbach axiom.
Assertion
Ref Expression
test (((c v (a' v b')) ^ (c' ^ (c v (a ^ b)))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))

Proof of Theorem test
StepHypRef Expression
1 oran3 93 . . . . 5 (a' v b') = (a ^ b)'
21lor 70 . . . 4 (c v (a' v b')) = (c v (a ^ b)')
32ran 78 . . 3 ((c v (a' v b')) ^ (c' ^ (c v (a ^ b)))) = ((c v (a ^ b)') ^ (c' ^ (c v (a ^ b))))
43ax-r5 38 . 2 (((c v (a' v b')) ^ (c' ^ (c v (a ^ b)))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = (((c v (a ^ b)') ^ (c' ^ (c v (a ^ b)))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b)))))
5 comor1 461 . . . . . . 7 (c v (a ^ b)') C c
65comcom2 183 . . . . . 6 (c v (a ^ b)') C c'
7 comor2 462 . . . . . . 7 (c v (a ^ b)') C (a ^ b)'
87comcom7 460 . . . . . 6 (c v (a ^ b)') C (a ^ b)
96, 8com2an 484 . . . . 5 (c v (a ^ b)') C (c' ^ (a ^ b))
106, 8com2or 483 . . . . . 6 (c v (a ^ b)') C (c' v (a ^ b))
115, 10com2an 484 . . . . 5 (c v (a ^ b)') C (c ^ (c' v (a ^ b)))
129, 11com2or 483 . . . 4 (c v (a ^ b)') C ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))
135, 8com2or 483 . . . . 5 (c v (a ^ b)') C (c v (a ^ b))
146, 13com2an 484 . . . 4 (c v (a ^ b)') C (c' ^ (c v (a ^ b)))
1512, 14fh4r 476 . . 3 (((c v (a ^ b)') ^ (c' ^ (c v (a ^ b)))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = (((c v (a ^ b)') v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) ^ ((c' ^ (c v (a ^ b))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))))
16 ax-a3 32 . . . . . . 7 (((c v (a ^ b)') v (c' ^ (a ^ b))) v (c ^ (c' v (a ^ b)))) = ((c v (a ^ b)') v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b)))))
1716ax-r1 35 . . . . . 6 ((c v (a ^ b)') v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = (((c v (a ^ b)') v (c' ^ (a ^ b))) v (c ^ (c' v (a ^ b))))
18 ax-a2 31 . . . . . . 7 (((c v (a ^ b)') v (c' ^ (a ^ b))) v (c ^ (c' v (a ^ b)))) = ((c ^ (c' v (a ^ b))) v ((c v (a ^ b)') v (c' ^ (a ^ b))))
19 anor2 89 . . . . . . . . . . 11 (c' ^ (a ^ b)) = (c v (a ^ b)')'
2019lor 70 . . . . . . . . . 10 ((c v (a ^ b)') v (c' ^ (a ^ b))) = ((c v (a ^ b)') v (c v (a ^ b)')')
21 df-t 41 . . . . . . . . . . 11 1 = ((c v (a ^ b)') v (c v (a ^ b)')')
2221ax-r1 35 . . . . . . . . . 10 ((c v (a ^ b)') v (c v (a ^ b)')') = 1
2320, 22ax-r2 36 . . . . . . . . 9 ((c v (a ^ b)') v (c' ^ (a ^ b))) = 1
2423lor 70 . . . . . . . 8 ((c ^ (c' v (a ^ b))) v ((c v (a ^ b)') v (c' ^ (a ^ b)))) = ((c ^ (c' v (a ^ b))) v 1)
25 or1 104 . . . . . . . 8 ((c ^ (c' v (a ^ b))) v 1) = 1
2624, 25ax-r2 36 . . . . . . 7 ((c ^ (c' v (a ^ b))) v ((c v (a ^ b)') v (c' ^ (a ^ b)))) = 1
2718, 26ax-r2 36 . . . . . 6 (((c v (a ^ b)') v (c' ^ (a ^ b))) v (c ^ (c' v (a ^ b)))) = 1
2817, 27ax-r2 36 . . . . 5 ((c v (a ^ b)') v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = 1
29 ax-a3 32 . . . . . . 7 (((c' ^ (c v (a ^ b))) v (c' ^ (a ^ b))) v (c ^ (c' v (a ^ b)))) = ((c' ^ (c v (a ^ b))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b)))))
3029ax-r1 35 . . . . . 6 ((c' ^ (c v (a ^ b))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = (((c' ^ (c v (a ^ b))) v (c' ^ (a ^ b))) v (c ^ (c' v (a ^ b))))
31 ax-a2 31 . . . . . . . . 9 ((c' ^ (c v (a ^ b))) v (c' ^ (a ^ b))) = ((c' ^ (a ^ b)) v (c' ^ (c v (a ^ b))))
32 leor 159 . . . . . . . . . . 11 (a ^ b) =< (c v (a ^ b))
3332lelan 167 . . . . . . . . . 10 (c' ^ (a ^ b)) =< (c' ^ (c v (a ^ b)))
3433df-le2 131 . . . . . . . . 9 ((c' ^ (a ^ b)) v (c' ^ (c v (a ^ b)))) = (c' ^ (c v (a ^ b)))
3531, 34ax-r2 36 . . . . . . . 8 ((c' ^ (c v (a ^ b))) v (c' ^ (a ^ b))) = (c' ^ (c v (a ^ b)))
3635ax-r5 38 . . . . . . 7 (((c' ^ (c v (a ^ b))) v (c' ^ (a ^ b))) v (c ^ (c' v (a ^ b)))) = ((c' ^ (c v (a ^ b))) v (c ^ (c' v (a ^ b))))
37 coman1 185 . . . . . . . . . 10 (c' ^ (c v (a ^ b))) C c'
3837comcom7 460 . . . . . . . . 9 (c' ^ (c v (a ^ b))) C c
39 comor1 461 . . . . . . . . . . 11 (c' v (a ^ b)) C c'
4039comcom7 460 . . . . . . . . . . . 12 (c' v (a ^ b)) C c
41 comor2 462 . . . . . . . . . . . 12 (c' v (a ^ b)) C (a ^ b)
4240, 41com2or 483 . . . . . . . . . . 11 (c' v (a ^ b)) C (c v (a ^ b))
4339, 42com2an 484 . . . . . . . . . 10 (c' v (a ^ b)) C (c' ^ (c v (a ^ b)))
4443comcom 453 . . . . . . . . 9 (c' ^ (c v (a ^ b))) C (c' v (a ^ b))
4538, 44fh3 471 . . . . . . . 8 ((c' ^ (c v (a ^ b))) v (c ^ (c' v (a ^ b)))) = (((c' ^ (c v (a ^ b))) v c) ^ ((c' ^ (c v (a ^ b))) v (c' v (a ^ b))))
46 ax-a2 31 . . . . . . . . . 10 ((c' ^ (c v (a ^ b))) v c) = (c v (c' ^ (c v (a ^ b))))
47 oml 445 . . . . . . . . . 10 (c v (c' ^ (c v (a ^ b)))) = (c v (a ^ b))
4846, 47ax-r2 36 . . . . . . . . 9 ((c' ^ (c v (a ^ b))) v c) = (c v (a ^ b))
49 or12 80 . . . . . . . . . 10 ((c' ^ (c v (a ^ b))) v (c' v (a ^ b))) = (c' v ((c' ^ (c v (a ^ b))) v (a ^ b)))
50 ax-a3 32 . . . . . . . . . . . 12 ((c' v (c' ^ (c v (a ^ b)))) v (a ^ b)) = (c' v ((c' ^ (c v (a ^ b))) v (a ^ b)))
5150ax-r1 35 . . . . . . . . . . 11 (c' v ((c' ^ (c v (a ^ b))) v (a ^ b))) = ((c' v (c' ^ (c v (a ^ b)))) v (a ^ b))
52 orabs 120 . . . . . . . . . . . 12 (c' v (c' ^ (c v (a ^ b)))) = c'
5352ax-r5 38 . . . . . . . . . . 11 ((c' v (c' ^ (c v (a ^ b)))) v (a ^ b)) = (c' v (a ^ b))
5451, 53ax-r2 36 . . . . . . . . . 10 (c' v ((c' ^ (c v (a ^ b))) v (a ^ b))) = (c' v (a ^ b))
5549, 54ax-r2 36 . . . . . . . . 9 ((c' ^ (c v (a ^ b))) v (c' v (a ^ b))) = (c' v (a ^ b))
5648, 552an 79 . . . . . . . 8 (((c' ^ (c v (a ^ b))) v c) ^ ((c' ^ (c v (a ^ b))) v (c' v (a ^ b)))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
5745, 56ax-r2 36 . . . . . . 7 ((c' ^ (c v (a ^ b))) v (c ^ (c' v (a ^ b)))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
5836, 57ax-r2 36 . . . . . 6 (((c' ^ (c v (a ^ b))) v (c' ^ (a ^ b))) v (c ^ (c' v (a ^ b)))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
5930, 58ax-r2 36 . . . . 5 ((c' ^ (c v (a ^ b))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
6028, 592an 79 . . . 4 (((c v (a ^ b)') v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) ^ ((c' ^ (c v (a ^ b))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b)))))) = (1 ^ ((c v (a ^ b)) ^ (c' v (a ^ b))))
61 ancom 74 . . . . 5 (1 ^ ((c v (a ^ b)) ^ (c' v (a ^ b)))) = (((c v (a ^ b)) ^ (c' v (a ^ b))) ^ 1)
62 an1 106 . . . . 5 (((c v (a ^ b)) ^ (c' v (a ^ b))) ^ 1) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
6361, 62ax-r2 36 . . . 4 (1 ^ ((c v (a ^ b)) ^ (c' v (a ^ b)))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
6460, 63ax-r2 36 . . 3 (((c v (a ^ b)') v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) ^ ((c' ^ (c v (a ^ b))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b)))))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
6515, 64ax-r2 36 . 2 (((c v (a ^ b)') ^ (c' ^ (c v (a ^ b)))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
664, 65ax-r2 36 1 (((c v (a' v b')) ^ (c' ^ (c v (a ^ b)))) v ((c' ^ (a ^ b)) v (c ^ (c' v (a ^ b))))) = ((c v (a ^ b)) ^ (c' v (a ^ b)))
Colors of variables: term
Syntax hints:   = wb 1  'wn 4   v wo 6   ^ wa 7  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131  df-c1 132  df-c2 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator