| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u1lemaa | Unicode version | ||
| Description: Lemma for Sasaki implication study. Equation 4.10 of [MegPav2000] p. 23. This is the second part of the equation. |
| Ref | Expression |
|---|---|
| u1lemaa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 |
. . 3
| |
| 2 | 1 | ran 78 |
. 2
|
| 3 | comid 187 |
. . . . 5
| |
| 4 | 3 | comcom2 183 |
. . . 4
|
| 5 | comanr1 464 |
. . . 4
| |
| 6 | 4, 5 | fh1r 473 |
. . 3
|
| 7 | ax-a2 31 |
. . . . 5
| |
| 8 | an32 83 |
. . . . . . 7
| |
| 9 | anidm 111 |
. . . . . . . 8
| |
| 10 | 9 | ran 78 |
. . . . . . 7
|
| 11 | 8, 10 | ax-r2 36 |
. . . . . 6
|
| 12 | ancom 74 |
. . . . . . 7
| |
| 13 | dff 101 |
. . . . . . . 8
| |
| 14 | 13 | ax-r1 35 |
. . . . . . 7
|
| 15 | 12, 14 | ax-r2 36 |
. . . . . 6
|
| 16 | 11, 15 | 2or 72 |
. . . . 5
|
| 17 | 7, 16 | ax-r2 36 |
. . . 4
|
| 18 | or0 102 |
. . . 4
| |
| 19 | 17, 18 | ax-r2 36 |
. . 3
|
| 20 | 6, 19 | ax-r2 36 |
. 2
|
| 21 | 2, 20 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u1lemnona 665 u12lembi 726 u1lem5 761 negantlem2 849 kb10iii 893 oas 925 oau 929 oaur 930 oa6to4 958 oa8to5 972 |
| Copyright terms: Public domain | W3C validator |