| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u3lem11 | Unicode version | ||
| Description: Lemma for unified implication study. |
| Ref | Expression |
|---|---|
| u3lem11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i3 46 |
. 2
| |
| 2 | ax-a1 30 |
. . . . . 6
| |
| 3 | 2 | lan 77 |
. . . . 5
|
| 4 | 3 | lor 70 |
. . . 4
|
| 5 | 4 | ax-r5 38 |
. . 3
|
| 6 | oran 87 |
. . . . . . . 8
| |
| 7 | 6 | lan 77 |
. . . . . . 7
|
| 8 | anass 76 |
. . . . . . . 8
| |
| 9 | 8 | ax-r1 35 |
. . . . . . 7
|
| 10 | dff 101 |
. . . . . . 7
| |
| 11 | 7, 9, 10 | 3tr1 63 |
. . . . . 6
|
| 12 | anor3 90 |
. . . . . . . . . . . 12
| |
| 13 | 12 | ax-r5 38 |
. . . . . . . . . . 11
|
| 14 | ax-a2 31 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | ax-r2 36 |
. . . . . . . . . 10
|
| 16 | oran1 91 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | ax-r2 36 |
. . . . . . . . 9
|
| 18 | 17 | ax-r1 35 |
. . . . . . . 8
|
| 19 | 18 | lan 77 |
. . . . . . 7
|
| 20 | coman1 185 |
. . . . . . . . 9
| |
| 21 | coman2 186 |
. . . . . . . . . 10
| |
| 22 | 21 | comcom7 460 |
. . . . . . . . 9
|
| 23 | 20, 22 | fh2 470 |
. . . . . . . 8
|
| 24 | anass 76 |
. . . . . . . . . . 11
| |
| 25 | 24 | ax-r1 35 |
. . . . . . . . . 10
|
| 26 | anidm 111 |
. . . . . . . . . . 11
| |
| 27 | 26 | ran 78 |
. . . . . . . . . 10
|
| 28 | 25, 27 | ax-r2 36 |
. . . . . . . . 9
|
| 29 | 28 | ax-r5 38 |
. . . . . . . 8
|
| 30 | 23, 29 | ax-r2 36 |
. . . . . . 7
|
| 31 | 19, 30 | ax-r2 36 |
. . . . . 6
|
| 32 | 11, 31 | 2or 72 |
. . . . 5
|
| 33 | ax-a2 31 |
. . . . . 6
| |
| 34 | or0 102 |
. . . . . 6
| |
| 35 | 33, 34 | ax-r2 36 |
. . . . 5
|
| 36 | 32, 35 | ax-r2 36 |
. . . 4
|
| 37 | ax-a2 31 |
. . . . . . . . . . 11
| |
| 38 | df-t 41 |
. . . . . . . . . . . 12
| |
| 39 | 38 | ax-r1 35 |
. . . . . . . . . . 11
|
| 40 | 37, 39 | ax-r2 36 |
. . . . . . . . . 10
|
| 41 | 40 | ax-r5 38 |
. . . . . . . . 9
|
| 42 | ax-a3 32 |
. . . . . . . . 9
| |
| 43 | ax-a2 31 |
. . . . . . . . . 10
| |
| 44 | or1 104 |
. . . . . . . . . 10
| |
| 45 | 43, 44 | ax-r2 36 |
. . . . . . . . 9
|
| 46 | 41, 42, 45 | 3tr2 64 |
. . . . . . . 8
|
| 47 | 46 | ran 78 |
. . . . . . 7
|
| 48 | ancom 74 |
. . . . . . . 8
| |
| 49 | an1 106 |
. . . . . . . 8
| |
| 50 | 48, 49 | ax-r2 36 |
. . . . . . 7
|
| 51 | 47, 50 | ax-r2 36 |
. . . . . 6
|
| 52 | 51 | lan 77 |
. . . . 5
|
| 53 | ancom 74 |
. . . . . . . 8
| |
| 54 | 53 | lor 70 |
. . . . . . 7
|
| 55 | comor1 461 |
. . . . . . . . 9
| |
| 56 | 55 | comcom2 183 |
. . . . . . . 8
|
| 57 | comor2 462 |
. . . . . . . . 9
| |
| 58 | 57 | comcom2 183 |
. . . . . . . 8
|
| 59 | 56, 58 | fh4 472 |
. . . . . . 7
|
| 60 | 54, 59 | ax-r2 36 |
. . . . . 6
|
| 61 | 60 | lan 77 |
. . . . 5
|
| 62 | id 59 |
. . . . 5
| |
| 63 | 52, 61, 62 | 3tr1 63 |
. . . 4
|
| 64 | 36, 63 | 2or 72 |
. . 3
|
| 65 | df-i3 46 |
. . 3
| |
| 66 | 5, 64, 65 | 3tr1 63 |
. 2
|
| 67 | 1, 66 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u3lem11a 787 |
| Copyright terms: Public domain | W3C validator |