| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u4lem4 | Unicode version | ||
| Description: Lemma for unified implication study. |
| Ref | Expression |
|---|---|
| u4lem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i4 47 |
. 2
| |
| 2 | u4lem3 752 |
. . . . . . . . 9
| |
| 3 | comid 187 |
. . . . . . . . . . . 12
| |
| 4 | 3 | comcom2 183 |
. . . . . . . . . . 11
|
| 5 | comanr1 464 |
. . . . . . . . . . . 12
| |
| 6 | comanr1 464 |
. . . . . . . . . . . 12
| |
| 7 | 5, 6 | com2or 483 |
. . . . . . . . . . 11
|
| 8 | 4, 7 | com2or 483 |
. . . . . . . . . 10
|
| 9 | 8 | comcom 453 |
. . . . . . . . 9
|
| 10 | 2, 9 | bctr 181 |
. . . . . . . 8
|
| 11 | 10 | comcom 453 |
. . . . . . 7
|
| 12 | 11, 4 | fh2r 474 |
. . . . . 6
|
| 13 | 12 | ax-r1 35 |
. . . . 5
|
| 14 | ancom 74 |
. . . . . 6
| |
| 15 | df-t 41 |
. . . . . . . . 9
| |
| 16 | 15 | ax-r1 35 |
. . . . . . . 8
|
| 17 | 16 | lan 77 |
. . . . . . 7
|
| 18 | an1 106 |
. . . . . . 7
| |
| 19 | 17, 18 | ax-r2 36 |
. . . . . 6
|
| 20 | 14, 19 | ax-r2 36 |
. . . . 5
|
| 21 | 13, 20 | ax-r2 36 |
. . . 4
|
| 22 | 10 | comcom4 455 |
. . . . . 6
|
| 23 | comid 187 |
. . . . . . 7
| |
| 24 | 23 | comcom3 454 |
. . . . . 6
|
| 25 | 22, 24 | fh1r 473 |
. . . . 5
|
| 26 | dff 101 |
. . . . . . . 8
| |
| 27 | 26 | ax-r1 35 |
. . . . . . 7
|
| 28 | 27 | lor 70 |
. . . . . 6
|
| 29 | or0 102 |
. . . . . 6
| |
| 30 | 28, 29 | ax-r2 36 |
. . . . 5
|
| 31 | 25, 30 | ax-r2 36 |
. . . 4
|
| 32 | 21, 31 | 2or 72 |
. . 3
|
| 33 | 10 | comcom2 183 |
. . . . . 6
|
| 34 | 23 | comcom2 183 |
. . . . . 6
|
| 35 | 33, 34 | fh3 471 |
. . . . 5
|
| 36 | df-t 41 |
. . . . . . . 8
| |
| 37 | 36 | ax-r1 35 |
. . . . . . 7
|
| 38 | 37 | lan 77 |
. . . . . 6
|
| 39 | an1 106 |
. . . . . 6
| |
| 40 | 38, 39 | ax-r2 36 |
. . . . 5
|
| 41 | 35, 40 | ax-r2 36 |
. . . 4
|
| 42 | 2 | ax-r5 38 |
. . . . 5
|
| 43 | or32 82 |
. . . . . 6
| |
| 44 | oridm 110 |
. . . . . . . 8
| |
| 45 | 44 | ax-r5 38 |
. . . . . . 7
|
| 46 | 2 | ax-r1 35 |
. . . . . . 7
|
| 47 | 45, 46 | ax-r2 36 |
. . . . . 6
|
| 48 | 43, 47 | ax-r2 36 |
. . . . 5
|
| 49 | 42, 48 | ax-r2 36 |
. . . 4
|
| 50 | 41, 49 | ax-r2 36 |
. . 3
|
| 51 | 32, 50 | ax-r2 36 |
. 2
|
| 52 | 1, 51 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |