| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u4lemle2 | Unicode version | ||
| Description: Non-tollens implication to l.e. |
| Ref | Expression |
|---|---|
| u4lemle2.1 |
|
| Ref | Expression |
|---|---|
| u4lemle2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i4 47 |
. . . . . 6
| |
| 2 | 1 | ax-r1 35 |
. . . . 5
|
| 3 | u4lemle2.1 |
. . . . 5
| |
| 4 | 2, 3 | ax-r2 36 |
. . . 4
|
| 5 | 4 | lan 77 |
. . 3
|
| 6 | comanr1 464 |
. . . . . . 7
| |
| 7 | comanr1 464 |
. . . . . . . 8
| |
| 8 | 7 | comcom6 459 |
. . . . . . 7
|
| 9 | 6, 8 | com2or 483 |
. . . . . 6
|
| 10 | 9 | comcom 453 |
. . . . 5
|
| 11 | comor1 461 |
. . . . . . . . . 10
| |
| 12 | 11 | comcom7 460 |
. . . . . . . . 9
|
| 13 | comor2 462 |
. . . . . . . . 9
| |
| 14 | 12, 13 | com2an 484 |
. . . . . . . 8
|
| 15 | 11, 13 | com2an 484 |
. . . . . . . 8
|
| 16 | 14, 15 | com2or 483 |
. . . . . . 7
|
| 17 | 16 | comcom 453 |
. . . . . 6
|
| 18 | comanr2 465 |
. . . . . . . . 9
| |
| 19 | 18 | comcom3 454 |
. . . . . . . 8
|
| 20 | comanr2 465 |
. . . . . . . . 9
| |
| 21 | 20 | comcom3 454 |
. . . . . . . 8
|
| 22 | 19, 21 | com2or 483 |
. . . . . . 7
|
| 23 | 22 | comcom 453 |
. . . . . 6
|
| 24 | 17, 23 | com2an 484 |
. . . . 5
|
| 25 | 10, 24 | fh2 470 |
. . . 4
|
| 26 | 6, 8 | fh1 469 |
. . . . . . 7
|
| 27 | anidm 111 |
. . . . . . . . . . . . 13
| |
| 28 | 27 | ran 78 |
. . . . . . . . . . . 12
|
| 29 | 28 | ax-r1 35 |
. . . . . . . . . . 11
|
| 30 | anass 76 |
. . . . . . . . . . 11
| |
| 31 | 29, 30 | ax-r2 36 |
. . . . . . . . . 10
|
| 32 | dff 101 |
. . . . . . . . . . . . 13
| |
| 33 | 32 | lan 77 |
. . . . . . . . . . . 12
|
| 34 | an0 108 |
. . . . . . . . . . . 12
| |
| 35 | ancom 74 |
. . . . . . . . . . . 12
| |
| 36 | 33, 34, 35 | 3tr2 64 |
. . . . . . . . . . 11
|
| 37 | anass 76 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | ax-r2 36 |
. . . . . . . . . 10
|
| 39 | 31, 38 | 2or 72 |
. . . . . . . . 9
|
| 40 | 39 | ax-r1 35 |
. . . . . . . 8
|
| 41 | or0 102 |
. . . . . . . 8
| |
| 42 | 40, 41 | ax-r2 36 |
. . . . . . 7
|
| 43 | 26, 42 | ax-r2 36 |
. . . . . 6
|
| 44 | anor1 88 |
. . . . . . . 8
| |
| 45 | 44 | lan 77 |
. . . . . . 7
|
| 46 | an12 81 |
. . . . . . 7
| |
| 47 | dff 101 |
. . . . . . 7
| |
| 48 | 45, 46, 47 | 3tr1 63 |
. . . . . 6
|
| 49 | 43, 48 | 2or 72 |
. . . . 5
|
| 50 | 49, 41 | ax-r2 36 |
. . . 4
|
| 51 | 25, 50 | ax-r2 36 |
. . 3
|
| 52 | an1 106 |
. . 3
| |
| 53 | 5, 51, 52 | 3tr2 64 |
. 2
|
| 54 | 53 | df2le1 135 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |