| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud2lem2 | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud2lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i2 45 |
. 2
| |
| 2 | oran 87 |
. . . . . . 7
| |
| 3 | 2 | con2 67 |
. . . . . 6
|
| 4 | 3 | ax-r1 35 |
. . . . 5
|
| 5 | oran 87 |
. . . . . . . . . . . . 13
| |
| 6 | 5 | con2 67 |
. . . . . . . . . . . 12
|
| 7 | 6 | ax-r1 35 |
. . . . . . . . . . 11
|
| 8 | 7 | lor 70 |
. . . . . . . . . 10
|
| 9 | anor2 89 |
. . . . . . . . . . . 12
| |
| 10 | 9 | ax-r1 35 |
. . . . . . . . . . 11
|
| 11 | 10 | con3 68 |
. . . . . . . . . 10
|
| 12 | 8, 11 | ax-r2 36 |
. . . . . . . . 9
|
| 13 | 12 | con2 67 |
. . . . . . . 8
|
| 14 | 13 | ran 78 |
. . . . . . 7
|
| 15 | an32 83 |
. . . . . . . 8
| |
| 16 | anidm 111 |
. . . . . . . . 9
| |
| 17 | 16 | ran 78 |
. . . . . . . 8
|
| 18 | 15, 17 | ax-r2 36 |
. . . . . . 7
|
| 19 | 14, 18 | ax-r2 36 |
. . . . . 6
|
| 20 | 3, 19 | ax-r2 36 |
. . . . 5
|
| 21 | 4, 20 | ax-r2 36 |
. . . 4
|
| 22 | 21 | lor 70 |
. . 3
|
| 23 | oml 445 |
. . 3
| |
| 24 | 22, 23 | ax-r2 36 |
. 2
|
| 25 | 1, 24 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 |
| This theorem is referenced by: ud2 596 |
| Copyright terms: Public domain | W3C validator |