| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud5lem1c | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud5lem1c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud5lem0c 281 |
. . 3
| |
| 2 | ud5lem0c 281 |
. . . 4
| |
| 3 | ax-a2 31 |
. . . . . 6
| |
| 4 | ax-a2 31 |
. . . . . 6
| |
| 5 | 3, 4 | 2an 79 |
. . . . 5
|
| 6 | ax-a2 31 |
. . . . 5
| |
| 7 | 5, 6 | 2an 79 |
. . . 4
|
| 8 | 2, 7 | ax-r2 36 |
. . 3
|
| 9 | 1, 8 | 2an 79 |
. 2
|
| 10 | an4 86 |
. . 3
| |
| 11 | ancom 74 |
. . . 4
| |
| 12 | anidm 111 |
. . . . . 6
| |
| 13 | an4 86 |
. . . . . . 7
| |
| 14 | anidm 111 |
. . . . . . . . . 10
| |
| 15 | 14 | ran 78 |
. . . . . . . . 9
|
| 16 | ancom 74 |
. . . . . . . . 9
| |
| 17 | 15, 16 | ax-r2 36 |
. . . . . . . 8
|
| 18 | anass 76 |
. . . . . . . 8
| |
| 19 | 17, 18 | ax-r2 36 |
. . . . . . 7
|
| 20 | 13, 19 | ax-r2 36 |
. . . . . 6
|
| 21 | 12, 20 | 2an 79 |
. . . . 5
|
| 22 | anass 76 |
. . . . . 6
| |
| 23 | 22 | ax-r1 35 |
. . . . 5
|
| 24 | 21, 23 | ax-r2 36 |
. . . 4
|
| 25 | 11, 24 | ax-r2 36 |
. . 3
|
| 26 | 10, 25 | ax-r2 36 |
. 2
|
| 27 | 9, 26 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i5 48 |
| This theorem is referenced by: ud5lem1 589 |
| Copyright terms: Public domain | W3C validator |