| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ml2i | GIF version | ||
| Description: Inference version of modular law. |
| Ref | Expression |
|---|---|
| mli.1 | c ≤ a |
| Ref | Expression |
|---|---|
| ml2i | (c ∪ (b ∩ a)) = ((c ∪ b) ∩ a) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ml 1121 | . 2 (c ∪ (b ∩ (c ∪ a))) = ((c ∪ b) ∩ (c ∪ a)) | |
| 2 | mli.1 | . . . . 5 c ≤ a | |
| 3 | 2 | df-le2 131 | . . . 4 (c ∪ a) = a |
| 4 | 3 | lan 77 | . . 3 (b ∩ (c ∪ a)) = (b ∩ a) |
| 5 | 4 | lor 70 | . 2 (c ∪ (b ∩ (c ∪ a))) = (c ∪ (b ∩ a)) |
| 6 | 3 | lan 77 | . 2 ((c ∪ b) ∩ (c ∪ a)) = ((c ∪ b) ∩ a) |
| 7 | 1, 5, 6 | 3tr2 64 | 1 (c ∪ (b ∩ a)) = ((c ∪ b) ∩ a) |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1120 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: mli 1124 l42modlem1 1147 dp53lemb 1162 dp35lemb 1174 dp41lemd 1184 dp32 1194 xdp41 1196 xdp53 1198 xxdp41 1199 xxdp53 1201 xdp45lem 1202 xdp43lem 1203 xdp45 1204 xdp43 1205 3dp43 1206 |
| Copyright terms: Public domain | W3C validator |