
©2009 Google -- aleax@google.com

Zen and the Art of
Abstraction Maintenance

http://www.aleax.it/osc09_abst.pdf

This talk's "level"

2

Shu

Ha

Ri

("Learn")

("Detach")

("Transcend")

5' Q & A at the end
(+: let's talk later!)

A Tower of Abstractions

3

Can't Live Without it...

4

programming (& other "knowledge work")
USES abstraction layers,
often PRODUCES new layers

...can live with it?

5

all abstractions "LEAK" (Spolsky's Law)

...bugs, overloads, attacks...

...you MUST "get" a few layers below!
+, they SHOULD "leak" (sometimes;-)

in designed, architected ways
and: abstraction *can slow you down*!

Abstract -> Procrastinate!
McCrea, S. M., Liberman, N., Trope, Y., & Sherman,
S. J. -- Construal level and procrastination.
Psychological Science, Volume 19, Number 12,
December 2008, pp. 1308-1314(7)
remote events are mentally construed at
higher abstraction levels than "near" ones
reverse holds: higher-abstraction construal
levels lead to > chance of procrastination
(at least for psych students, typically the
only experimental subjects available;-)

6

To Achieve, Think Concrete!
Allen, "Getting Things Done":

what's my SINGLE NEXT ACTION?
interaction (& user-centered) design:

NOT "the user", BUT "John, newbie
trader, vast videogame experience" and
"Mark, seasoned trader, started in
Hammurabi's time, STILL prefers
cuneiform on clay tablets"

"prefer action to abstr-action" (J. Fried,
founder of "37 signals")

7

Abstraction Penalty
when a language allows low- and high-
abstraction approaches, there can be a
penalty for abstraction (Stepanov, http://
std.dkuug.dk/JTC1/SC22/WG21/docs/
PDTR18015.pdf & much later research)
an issue of quality of implementation, not
always true: in Python we're used to an
abstraction *bonus*, not *penalty*!

8

Itertools FLIES!

9

$ python -mtimeit 'for x in range(42): pass'
100000 loops, best of 3: 5.13 usec per loop

$ python -mtimeit 'for x in xrange(42): pass'
100000 loops, best of 3: 4.17 usec per loop

$ python -mtimeit -s'import itertools' \
> 'for x in itertools.repeat(None, 42): pass'
100000 loops, best of 3: 3.4 usec per loop

The "Martian Smilie" rocks!
$ python -mtimeit -s'x="abracadabra"' \
> 'y="".join(reversed(x))'
100000 loops, best of 3: 5.96 usec per loop
$ python -mtimeit -s'x="abracadabra"' \
> 'y=x[::-1]'
1000000 loops, best of 3: 0.597 usec per loop

10

all abstractions leak, because...
...*all abstractions LIE*!

before you can abstract,
you must grok the details

before you can step back,
you must come close

abstract only when you know ALL details
→since you can't, be humble & flexible!

All Abstractions Leak

11

the map is not the territory

A great abstraction: TCP/IP

12

TCP leaks: *TRUST*!

13

TCP/IP, superb stack of abstractions, BUT...
...designed in an ancient era of trust!

The whole stack "leaks" all over the place
in terms of security attacks from:

"below" (ARP cache poisoning),
"above" (DNS cache poisoning),
"beside" (mendacious BGP),
"within" (sniffing, pwd FTP/Telnet, ...)
...etc, etc...

TCP/IP today...:-(

14

One "leak": ARP poisoning

15

Other "leak": DNS poisoning

16

The worst: BGP Hijacking

17

..."leaks" may be *good*!

18

e.g.: remote/distributed filesystems trying
to "emulate" local ones

"less local" → the costlier "abstraction"
semantics, locking, reliability, ...

"filesystem", splendid abstraction...
"local filesystem", NOT!

"never subclass a concrete class" [Haahr]
doesn't mean "abstraction is a bad thing"

JUST the abstraction isn't enough
needs systematic, usable LEAKS!

How to Abstract Wrong
small scale: 1 class → 1 interface

always "surfaces" implementation details
mid-scale: "subclassing concrete classes"

concrete class (== implementation) →
NEVER the right base for subclassing

mid-scale: encapsulation errors
windows vs toolbars in MFC 4.*

large scale: "floating framework"
"framework" with just 1 application...

19

How to Abstract Well

20

master at least 1-2 layers BELOW
to DESIGN an excellent abstraction:

DEEP familiarity with SEVERAL possible
implementations ("layers below")
DEEP familiarity with SEVERAL intended
uses ("layers above" which will USE it)
no blinders, no shortcuts!

YOU can be the next user or implementer!
Golden Rule's really a must;-)

http://c2.com/cgi/wiki?TooMuchAbstraction

Donald Knuth: yes, you can!
the psychological profiling [[of the
programmer]] is mostly the ability to shift
levels of abstraction, from low level to high
level. To see something in the small and to
see something in the large. [[...]]
Computer scientists see things
simultaneously at the low level and the
high level [[of abstraction]]

21

http://www.ddj.com/184409858

Jason Fried: and you must!
"Here's the problem with copying:

Copying skips understanding.
Understanding is how you grow.
You have to understand why something
works or why something is how it is.
When you copy it, you miss that.
You just repurpose the last layer instead
of understanding the layers underneath."

22

http://www.37signals.com/svn/posts/
1561-why-you-shouldnt-copy-us-or-anyone-else

Just '%s/copy/use existing high-level
abstractions blindly/g' ...;-)

App Engine "Hacks"

23

Cloud

Store

RPC

Monkey-patch Hacking
all operations go through an RPC layer,
apiproxy_stub_map.MakeSyncCall
not advisable: *monkey-patching*...:

24

from google.appengine.api import \
 apiproxy_stub_map
_org = apiproxy_stub_map.MakeSyncCall
def fake(svc, cal, req, rsp):
 ...
 x = _org(svc, cal, req, rsp) ...
apiproxy_stub_map.MakeSyncCall = fake

class Client(object):
"""Memcache client object... """

def __init__(self, servers=None, debug=0,
 pickleProtocol=pickle.HIGHEST_PROTOCOL,
 pickler=pickle.Pickler,
 unpickler=pickle.Unpickler,
 pload=None,
 pid=None,
 make_sync_call=apiproxy_stub_map.MakeSyncCall):
 """Create a new Client object.... """
 ...
 self._make_sync_call = make_sync_call

Why the Monkey is Sad

25

Better: use "Hooks"!
http://blog.appenginefan.com/2009/01/
hacking-google-app-engine-part-1.html (with
THANKS to Jens Scheffler!-)

from google.appengine.api import apiproxy_stub_map

def prehook(svc, cal, req, rsp):
 ...
apiproxy_stub_map.apiproxy.GetPreCallHooks(
).Append('unique_name', prehook, 'opt_api_id')

26

How to Supply "Hooks"?
...without a "natural funnel" such as RPC?
use key semantical "bottlenecks"

if your system does SQL queries,
pre-hooks w/SQL, post-hooks w/results

"event/callback" approaches (Qt signal/slot)
design patterns:

pre/post hooks & events ~ Observer
Template Method (e.g., Queue.Queue)
Dependency Injection

27

Making Hooks: scheduler
class ss(object):
 def __init__(self):
 self.i = itertools.count().next
 self.q = somemodule.PriorityQueue()
 def add_event(self, when, c, *a, **k):
 self.q.push((when, self.i(), c, a, k))
 def run(self):
 while self.q:
 when, n, c, a, k = self.q.pop()
 time.sleep(when - time.time())
 c(*a, **k)

28

(PQ is "obvious"...):
class PriorityQueue(object):
 def __init__(self):
 self.l = []
 def __len__(self):
 return len(self.l)
 def push(self, obj):
 heapq.heappush(self.l, obj)
 def pop(self):
 return heapq.heappop(self.l)

29

Nice abstraction, but...
...how to test ss without long waits?
...how to integrate it with event-loops of
other systems, simulations, etc...?

Problem: ss "concretely depends" on specific
objects (time.sleep and time.time).
To "make the abstraction leak", you can...:

1. leave it for "Monkey Patching"
2. design pattern: Dependency Injection

30

Monkey-patching...
import ss
class faker(object): pass
fake = faker()
ss.time = fake
fake.sleep = ...
fake.time = ...

31

useful in emergencies, but...
...too often an excuse for lazy design!-)

subtle, hidden "communication" via dark
byways (explicit is better than implicit!-)
broken by optimizations &c...

Dependency Injection
class ss(object):
 def __init__(self, tm=time.time,
 sl=time.sleep):
 self.tm = tm
 self.sl = sl
 ...
 self.sl(when - self.tm())

32

i.e., just like sched in the standard library!-)

DI is a handy hook!
class faketime(object):
 def __init__(self, t=0.0): self.t = t
 def time(self): return self.t
 def sleep(self, t): self.t += t

f = faketime()
s = ss(f.time, f.sleep)
...

33

DI example (app engine:-)
class Client(object):
"""Memcache client object... """

def __init__(self, servers=None, debug=0,
 pickleProtocol=pickle.HIGHEST_PROTOCOL,
 pickler=pickle.Pickler,
 unpickler=pickle.Unpickler,
 pload=None,
 pid=None,
 make_sync_call=apiproxy_stub_map.MakeSyncCall):
 """Create a new Client object.... """
 ...
 self._make_sync_call = make_sync_call

34

Q & A
http://www.aleax.it/osc09_abst.pdf

35

? !

