Zen and the Art of
Abstraction Maintenance

http://www.aleax.it/oscO09_abst.pdf

This talk's "level"

———

Shu

("Learn")

5 Q & A at the end

"Detach’”
("Detach") (+: let's talk later!)

("Transcend")

A Tower of Abstractions

push ebp

mov ebp, esp

mouzx ecx, [ebp+arg_0]
pop ebp

mouzx dx, cl

VY
—L= YV, ¥ =EY
o

"%

2m,

Can't Live Without it...

@ programming (& other "knowledge work™")
@ USES abstraction layers,
@ often PRODUCES new layers

...can live with i1?
@ all abstractions "LEAK" (Spolsky's Law)

@ ..bugs, overloads, attacks...

@ ..you MUST "get" a few layers below!
@ +, they SHOULD "leak" (sometimes;-)

@ in designed, architected ways
and: abstraction *can slow you down*!

5

Abstract -> Procrastinate!

@ McCrea, S. M., Liberman, N., Trope, Y., & Sherman,
S. J. -- Construal level and procrastination.
Psychological Science, Volume 19, Number 12,
December 2008, pp. 1308-1314(7)

@ remote events are mentally construed at

higher abstraction levels than "near” ones

@ reverse holds: higher-abstraction construal
levels lead to > chance of procrastination

@ (at least for psych students, typically the
only experimental subjects available;-)

To Achieve, Think Concrete!

@ Allen, "Getting Things Done":
@ what's my SINGLE NEXT ACTION?
@ interaction (& user-centered) design:

@ NOT "the user”, BUT "John, newbie
trader, vast videogame experience” and

"Mark, seasoned trader, started in
Hammurabi's time, STILL Prefers
cuneiform on clay tablets'

@ "prefer action to abstr-action" (J. Fried,
founder of "37 signals")

Abstraction Penalty

@ when a language allows low- and high-
abstraction approaches, there can be a
penalty for abstraction (Stepanov, http://
std.dkuug.dk/JTC1/5C22/WG21/docs/
PDTR18015.pdf & much later research)

@ an issue of quality of implementation, not
always true: in Python we're used to an
abstraction *bonus*, not *penalty*!

I’rer’rools FLIES!

4|r 4
$ python -mtimeit 'for x in range(42): pass'
100000 loops, best of 3: 5.13 usec per loop

$ python -mtimeit 'for x in xrange(42): pass'
100000 loops, best of 3: 4.17 usec per loop

$ python -mtimeit -s'import itertools' \
> 'for x in itertools.repeat(None, 42): pass'
100000 loops, best of 3: 3.4 usec per loop

&)

The "Martian Smilie" rocks!

$ python -mtimeit -s'x="abracadabra"' \
> 'y=""_.join(reversed(x))"

100000 loops, best of 3: 5.96 usec per loop

$ python -mtimeit -s'x="abracadabra"' \
> y=x[2=la

1000000 loops, best of 3: ©0.597 usec per loop

>
3 R

SN\
e Yy

& e

10

All Abstractions Leak

@ all abstractions leak, because...
@ .."all abstractions LIE*!
@ the map is not the tferritory
@ before you can abstract,
@ you must grok the details
@ before you can step back,
& you must come close

e

)
)
g T
—m .

@ abstract on'y ‘when you know ALL details
@ —since you can't, be humble & flexible!

A great abstraction: TCP/IP

Application
yer

layer

ol
Transport
la
A A header

, TCP/UDP
v header
Data link
layer
4 Frame IP TCP/UDP Frame
L 4 header | header header trailer
Physical
network

TCP leaks: *TRUST*!

@ TCP/IP, superb stack of abstractions, BUT...
@ ..designed in an ancient era of trust!

@ The whole stack "leaks" all over the place
in terms of security attacks from:

@ "below" (ARP cache poisoning),

@ "above" (DNS cache poisoning),

@ "beside" (mendacious BGP),

@ "within" (sniffing, pwd FTP/Telnet, ...)
@ ...efc, etc...

B BGP/Route Hijacking DNS Cache Poisoning
(unintentional or malicious)

Il Link /Host Ficoding Worms

dentity/Credential Theft Bots and Botnets

. nfrastructure Services
DDoS (DNS, VolP, other)

[Systems/Infrastructure
Compromise

Survey Respondents

One "leak": ARP poisoning

modified ARP cache points:
IP: 1 1t

(Eva's MA-é). o

Bob

B Regular Network Route
Diverted Network Route

Other "leak”: DNS poisoning

The worst: BGP Hijacking

146/268 2008-02-24 18149152 Path Change from 20483 12976 3327 3549 3451 17557
rrelld 193.232.244.82 to 20483 12976 3327 3491 17557
AS17557 PKTE
) 6487
25512 29208
24%.“
8434 3402 3561

39196286

3120 (28917 20965

29460
2048)

13645
16150

30012 — 89285167
—

1436

W Sip Reanncuncements | New Query

.."leaks" may be *good™!

@ e.g.: remote/distributed filesystems trying
to "emulate" local ones

@ "less local” — the costlier "abstraction”
@ semantics, locking, reliability, ...
@ "filesystem”, splendid abstraction...

@ "local filesystem", NOT!
@ "never subclass a concrete class" [Haahr]

@ doesn't mean "abstraction is a bad thing"
@ JUST the abstraction isn't enough
@ needs systematic, usable LEAKS!

18

How to Abstract Wrong

@ small scale: 1 class — 1 interface
@ always "surfaces" implementation details
@ mid-scale: "subclassing concrete classes"

@ concrete class (== implementation) —
NEVER the right base for subclassing

@ mid-scale: encapsulation errors
@ windows vs toolbars in MFC 4.*
@ large scale: "floating framework™
@ "framework™ with just 1 application...

How to Abstract Well

@ master at least 1-2 layers BELOW
@ to DESIGN an excellent abstraction:

@ DEEP familiarity with SEVERAL possible
implementations ("layers below")

@ DEEP familiarity with SEVERAL intended

uses ("layers above" which will USE it)
@ no blinders, no shortcuts!
@ YOU can be the next user or implementer!
@ Golden Rule's really a must;-)
@ http://c2.com/cqi/wiki?TooMuchAbstraction

Donald Knuth: yes, you can!

@ the psychological profiling [[of the
programmer]?is mostly the ability to shift

levels of abstraction, from low level to high
level. To see something in the small and tfo
see something in the large. [[...]]

@ Computer scientists see things
simultaneously at the low level and the
high level [[of abstraction]]

http://www.ddj.com/184409858

21

Jason Fried: and you must!

@ "Here's the problem with copying:
@ Copying skKips understanding.
@ Understanding is how you grow.

@ You have to understand why something
works or why something is how it is.

@ When you copy it, you miss that.

@ You just repurpose the last layer instead
of understanding the layers underneath."

@ Just '%s/copy/use existing high-level
abs’rrac’riongﬁlindly/g' ,9) 4

http://www.37signals.com/svn/posts/
1561-why-you-shouldnt-copy-us-or-anyone-else

22

App Engine "Hacks’

Monkey-patch Hacking

@ all operations go through an RPC layer,
apiproxy_stub_map.MakeSyncCall

@ not advisable: *monkey-patching®...:

from google.appengine.api import \
apiproxy_stub_map
_org = apiproxy_stub_map.MakeSyncCall
def fake(svc, cal, req, rsp):
x = _org(svc, cal, req, rsp)
ap{bﬁoxy_stub_map.MakeSyncCall = fake

f\\

Why the Monkey is Sad

class Client(object):
"""Memcache client object...

mmon

def __init__(self, servers=None, debug=0,
pickleProtocol=pickle.HIGHEST_PROTOCOL,
pickler=pickle.Pickler,
unpickler=pickle.Unpickler,
pload=None,
pid=None,
make_sync_call#@piproxy_stub_map.MakeSyncCaliD:

"""Create a new Client object.... """

self._make_sync_call = make_sync_call

t Better: use "Hooks'"!
http://blog.appenginefan.com/2009/01/

9

hacking-google-app-engine-part-1.html Cwith
THANKS to Jens Scheffler!-) (5

from google.appengine.api import apiproxy_stub_map

def prehook(svc, cal, req, rsp):

apiproxy_stub_map.apiproxy.GetPreCallHooks(
) .Append('unique_name', prehook, 'opt_api_id')

2

How to Supply "Hooks"?

@ ..without a "natural funnel” such as RPC?
@ use key semantical "bottlenecks"
@ if your system does SQL queries,
@ pre-hooks w/SQL, post-hooks w/results
@ "event/callback" approaches (Qt signal/slot)

@ design patterns:
o pre/post hooks & events ~ Observer
@ Template Method (e.g., Queue.Queue)
@ Dependency Injection

Making Hooks: scheduler

class ss(object):
def __init__(self):
self.1 = itertools.count().next

self.q = somemodule.PriorityQueue()
def add_event(self, when, c, *a, **k):

self.q.push((when, self.i(), c, a, k))
def run(self):
while self.q:
when, n, c, a, k = self.q.pop()
time.sleep(when - time.time())
c(¥*a, - **k)

(PQ is "obvious"...):

class PriorityQueue(object):
def __init__(self):
self.l = []
def __len__(self):
return len(self.l)

def push(self, obj):
heapq.heappush(self.1l, obj)
def pop(self):
return heapq.heappop(self.l)

Nice abstraction, but...

@ ..how to test ss without long waits?

@ ..how fo integrate it with event-loops of
other systems, simulations, efc...?

Problem: ss "concretely depends” on specific
objects (time.sleep and time.time).

To "make the abstraction leak", you can...:
1. leave it for "Monkey Patching"
2. design pattern: Dependency Injection

Monkey-patching...

import ss

class faker(object): pass
fake = faker()

ss.time = fake

fake.sleep = ...

fake .times =t s

@ useful in emergencies, but...
@ ..too often an excuse for lazy design!-)
@ subtle, hidden "communication” via dark
byways (explicit is better than implicit!-)
@ broken by optimizations &c...

31

Dependency Injection

class ss(object):
def __init__(self, tm=time.time,
sl=time.sleep):
self.tm = tm
self.sl = sl

self.sl(when - self.tm())

D i.e., just like sched in the standard library!-)

DI is a handy hook!

class faketime(object):
def __init. (selfi; t=0.0) Sl =t
def time(self): return self.t
def sleep(self, t): self.t += t

= faketime()
ss(f.time, f.sleep)

DI example (app engine:-)

class Client(object):
"""Memcache client object...

mmon

def __init__(self, servers=None, debug=0,
pickleProtocol=pickle.HIGHEST_PROTOCOL,
pickler=pickle.Pickler,
unpickler=pickle.Unpickler,
pload=None,
pid=None,
make_sync_call=apiproxy_stub_map.MakeSyncCall):
"""Create a new Client object.... """

self._make_sync_call = make_sync_call

Q& A
http://www.aleax.it/osc09_abst.pdf

?

