
Advanced methods for creating decorators
Graham Dumpleton

PyCon US - April 2014

Friday, 11 April 14

Intermission

Friday, 11 April 14

Rant about the history of this talk and why this topic
matters.

Python decorator syntax

@function_wrapper
def function():
 pass

Friday, 11 April 14

Even if you have never written your own decorator and
have only used them, you would know decorators from
the @ symbol used to prefix their usage.

What is happening?

def function():
 pass

function = function_wrapper(function)

Friday, 11 April 14

The @ symbol here though is little more than syntactic
sugar. One can do the same thing invoking the decorator
function explicitly, passing in the function to be
decorated and replacing the original with the result. In
fact this is what you had to do before the decorator
syntax was introduced in Python 2.4.

What is happening?

def function():
 pass

function = function_wrapper(function)

Friday, 11 April 14

The decorator syntax is therefore just a short hand way
of being able to apply a wrapper around an existing
function, or otherwise modify the existing function in
place, while the definition of the function is being setup.

Function wrapper

class function_wrapper(object):

 def __init__(self, wrapped):
 self.wrapped = wrapped

 def __call__(self, *args, **kwargs):
 return self.wrapped(*args, **kwargs)

@function_wrapper
def function():
 pass

Friday, 11 April 14

The more illustrative way of showing how a wrapper
works is to implement it using a class object. The class
instance is initialised with and remembers the original
function object. When the now wrapped function is
called, it is actually the __call__() method of the wrapper
object which is invoked. This in turn would then call the
original wrapped function.

Doing work in the wrapper

class function_wrapper(object):

 def __init__(self, wrapped):
 self.wrapped = wrapped

 def __call__(self, *args, **kwargs):
 name = self.wrapped.__name__
 print('enter %s()' % name)
 try:
 return self.wrapped(*args, **kwargs)
 finally:
 print('exit %s()' % name)

Friday, 11 April 14

A pass through wrapper isn’t particularly useful, so
normally you would actually want to do some work either
before or after the wrapped function is called. Or you
may want to modify the input arguments or the result as
they pass through the wrapper.

Using function closures
def function_wrapper(wrapped):

 def _wrapper(*args, **kwargs):
 name = wrapped.__name__
 print('enter %s()' % name)
 try:
 return wrapped(*args, **kwargs)
 finally:
 print('exit %s()' % name)

 return _wrapper

@function_wrapper
def function():
 pass

Friday, 11 April 14

Using a class to implement the wrapper for a decorator
isn't actually that popular. Instead a function closure is
more often used. In this case a nested function is used
as the wrapper and it is that which is returned by the
decorator function. When the now wrapped function is
called, the nested function is actually being called. This
in turn would again then call the original wrapped
function.

Using function closures
def function_wrapper(wrapped):

 def _wrapper(*args, **kwargs):
 name = wrapped.__name__
 print('enter %s()' % name)
 try:
 return wrapped(*args, **kwargs)
 finally:
 print('exit %s()' % name)

 return _wrapper

@function_wrapper
def function():
 pass

Friday, 11 April 14

In this situation the nested function doesn't actually get
passed the original wrapped function explicitly. But it will
still have access to it via the arguments given to the
outer function call. This does away with the need to
create a class to hold what was the wrapped function and
thus why it is convenient and generally more popular.

Introspecting functions

def function_wrapper(wrapped):
 def _wrapper(*args, **kwargs):
 return wrapped(*args, **kwargs)
 return _wrapper

@function_wrapper
def function():
 pass

>>> print(function.__name__)
_wrapper

Friday, 11 April 14

Now when we talk about functions, we expect them to
specify properties which describe them as well as
document what they do. These include the __name__ and
__doc__ attributes. When we use a wrapper though, this
no longer works as we expect as in the case of using a
function closure, the details of the nested function are
returned.

Class instances do not have names
class function_wrapper(object):
 def __init__(self, wrapped):
 self.wrapped = wrapped
 def __call__(self, *args, **kwargs):
 return self.wrapped(*args, **kwargs)

@function_wrapper
def function():
 pass

>>> print(function.__name__)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'function_wrapper' object
 has no attribute '__name__'

Friday, 11 April 14

If we use a class to implement the wrapper, as class
instances do not normally have a __name__ attribute,
attempting to access the name of the function will
actually result in an AttributeError exception.

Copying attributes to the wrapper

def function_wrapper(wrapped):
 def _wrapper(*args, **kwargs):
 return wrapped(*args, **kwargs)
 _wrapper.__name__ = wrapped.__name__
 _wrapper.__doc__ = wrapped.__doc__
 return _wrapper

@function_wrapper
def function():
 pass

>>> print(function.__name__)
function

Friday, 11 April 14

The solution here when using a function closure is to
copy the attributes of interest from the wrapped function
to the nested wrapper function. This will then result in
the function name and documentation strings being
correct.

Using functools.wraps()

import functools

def function_wrapper(wrapped):
 @functools.wraps(wrapped)
 def _wrapper(*args, **kwargs):
 return wrapped(*args, **kwargs)
 return _wrapper

@function_wrapper
def function():
 pass

>>> print(function.__name__)
function

Friday, 11 April 14

Needing to manually copy the attributes is laborious, and
would need to be updated if any further special
attributes were added which needed to be copied. For
example, we should also copy the __module__ attribute,
and in Python 3 the __qualname__ and __annotations__
attributes were added. To aid in getting this right, the
Python standard library provides the functools.wraps()
decorator which does this task for you.

Using functools.update_wrapper()

import functools

class function_wrapper(object):

 def __init__(self, wrapped):
 self.wrapped = wrapped
 functools.update_wrapper(self, wrapped)

 def __call__(self, *args, **kwargs):
 return self.wrapped(*args, **kwargs)

Friday, 11 April 14

If using a class to implement the wrapper, instead of the
functools.wraps() decorator, we would use the
functools.update_wrapper() function.

Function argument specifications

import inspect

def function_wrapper(wrapped): ...

@function_wrapper
def function(arg1, arg2): pass

>>> print(inspect.getargspec(function))
ArgSpec(args=[], varargs='args',
 keywords='kwargs', defaults=None)

Friday, 11 April 14

So we have managed to fix things up so the function
name and any documentation string is correct, but what
if we want to query the argument specification. This also
fails and instead of returning the argument specification
for the wrapped function, it returns that of the wrapper.
In the case of using a function closure, this is the nested
function. The decorator is therefore not signature
preserving.

Class instances are not wrappers.

class function_wrapper(object): ...

@function_wrapper
def function(arg1, arg2): pass

>>> print(inspect.getargspec(function))
Traceback (most recent call last):
 File "...", line XXX, in <module>
 print(inspect.getargspec(function))
 File ".../inspect.py", line 813, in getargspec
 raise TypeError('{!r} is not a Python
 function'.format(func))
TypeError: <__main__.function_wrapper object at
 0x107e0ac90> is not a Python function

Friday, 11 April 14

A worse situation again occurs with the class wrapper.
This time we get an exception complaining that the
wrapped function isn't actually a function. As a result it
isn't possible to derive an argument specification, even
though the wrapped function is actually still callable.

Functions vs Methods

class Class(object):

 @function_wrapper
 def method(self):
 pass

 @classmethod
 def cmethod(cls):
 pass

 @staticmethod
 def smethod():
 pass

Friday, 11 April 14

Now, as well as normal functions, decorators can also be
applied to methods of classes. Python even includes a
couple of special decorators called @classmethod and
@staticmethod for converting normal instance methods
into these special method types. Methods of classes do
provide a number of potential problems though.

Wrapping class and static methods

class Class(object):

 @function_wrapper
 @classmethod
 def cmethod(cls):
 pass

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in Class
 File "<stdin>", line 2, in wrapper
 File ".../functools.py", line 33, in update_wrapper
 setattr(wrapper, attr, getattr(wrapped, attr))
AttributeError: 'classmethod' object has no
 attribute '__module__'

Friday, 11 April 14

The first is that even if using functools.wraps() or
functools.update_wrapper() in your decorator, when the
decorator is applied around @classmethod or
@staticmethod, it will fail with an exception. This is
because the wrappers created by these, do not have
some of the attributes being copied. As it happens, this
is a Python 2 bug and it is fixed in Python 3 by ignoring
missing attributes.

Wrappers aren't always callable

class Class(object):
 @function_wrapper
 @classmethod
 def cmethod(cls):
 pass

Class.cmethod()

Traceback (most recent call last):
 File "classmethod.py", line 15, in <module>
 Class.cmethod()
 File "classmethod.py", line 6, in _wrapper
 return wrapped(*args, **kwargs)
TypeError: 'classmethod' object is not callable

Friday, 11 April 14

Even when we run it under Python 3, we still hit trouble
though. This is because both wrapper types assume that
the wrapped function is directly callable. This need not
actually be the case. A wrapped function can actually be
what is called a descriptor, meaning that in order to get
back a callable, the descriptor has to be correctly bound
to the instance first.

Issues encountered so far

• Preservation of function __name__ and __doc__.

• Preservation of function argument specification.

• Ability to apply decorators on top of other decorators that
are implemented as descriptors.

Friday, 11 April 14

So although decorators using function closures or class
wrappers may appear to solve the task at hand, they fail
in various corner cases and also don't do a very good job
at preserving the ability to do introspection. The latter is
a problem for documentation tools, IDEs and also some
performance monitoring or profiling tools.

What are descriptors?

• obj.attribute
 --> attribute.__get__(obj, type(obj))

• obj.attribute = value
 --> attribute.__set__(obj, value)

• del obj.attribute
 --> attribute.__delete__(obj)

Friday, 11 April 14

Lets go back now and look at these descriptors, as they
turn out to be a key mechanism in all this. A descriptor
is an object attribute with “binding behaviour”, one
whose attribute access has been overridden by methods
in the descriptor protocol. Those methods are __get__(),
__set__(), and __delete__(). If any of those methods are
defined for an object, it is said to be a descriptor.

What are descriptors?

• obj.attribute
 --> attribute.__get__(obj, type(obj))

• obj.attribute = value
 --> attribute.__set__(obj, value)

• del obj.attribute
 --> attribute.__delete__(obj)

Friday, 11 April 14

What this means is that if an attribute of a class has any
of these special methods defined, when the
corresponding operation is performed on that attribute
of a class, then those methods will be called instead of
the default action. This allows an attribute to override
how those operations are going to work.

Functions are descriptors

def f(obj): pass

>>> hasattr(f, '__get__')
True

>>> f
<function f at 0x10e963cf8>

>>> obj = object()

>>> f.__get__(obj, type(obj))
<bound method object.f of <object object
 at 0x10e8ac0b0>>

Friday, 11 April 14

You may well be thinking that you have never made use
of descriptors, but fact is that function objects are
actually descriptors. When a function is originally added
to a class definition it is as a normal function. When you
access that function using a dotted attribute path, you
are invoking the __get__() method to bind the function to
the class instance, turning it into a bound method of that
object.

Functions are descriptors

def f(obj): pass

>>> hasattr(f, '__get__')
True

>>> f
<function f at 0x10e963cf8>

>>> obj = object()

>>> f.__get__(obj, type(obj))
<bound method object.f of <object object
 at 0x10e8ac0b0>>

Friday, 11 April 14

So when calling a method of a class, it is not the
__call__() method of the original function object that is
called, but the __call__() method of the temporary bound
object that is created as a result of accessing the
function. The problem with classmethod was that it is
dependent on the descriptor protocol being applied as
the __call__() method only exists on the result returned
by __get__() when it is called.

Wrappers as descriptors
class bound_function_wrapper(object):
 def __init__(self, wrapped):
 self.wrapped = wrapped
 def __call__(self, *args, **kwargs):
 return self.wrapped(*args, **kwargs)

class function_wrapper(object):
 def __init__(self, wrapped):
 self.wrapped = wrapped
 def __get__(self, instance, owner):
 wrapped = self.wrapped.__get__(
 instance, owner)
 return bound_function_wrapper(wrapped)
 def __call__(self, *args, **kwargs):
 return self.wrapped(*args, **kwargs)

Friday, 11 April 14

The way to solve this is for wrappers to also be
descriptors. If the wrapper is applied to a normal
function, the __call__() method of the wrapper is used. If
the wrapper is applied to a method of a class, the
__get__() method is called, which returns a new bound
wrapper and the __call__() method of that is invoked
instead. This allows our wrapper to be used around
descriptors as it propagates the descriptor protocol.

Wrappers as descriptors
class bound_function_wrapper(object):
 def __init__(self, wrapped):
 self.wrapped = wrapped
 def __call__(self, *args, **kwargs):
 return self.wrapped(*args, **kwargs)

class function_wrapper(object):
 def __init__(self, wrapped):
 self.wrapped = wrapped
 def __get__(self, instance, owner):
 wrapped = self.wrapped.__get__(
 instance, owner)
 return bound_function_wrapper(wrapped)
 def __call__(self, *args, **kwargs):
 return self.wrapped(*args, **kwargs)

Friday, 11 April 14

So since using a function closure will ultimately fail if
used around a decorator which is implemented as a
descriptor, the situation we therefore have is that if we
want everything to work, then decorators should always
use this pattern. The question now is how do we address
the other issues we had.

What does functools.wraps() do?

WRAPPER_ASSIGNMENTS = ('__module__',
 '__name__', '__qualname__', '__doc__',
 '__annotations__')

WRAPPER_UPDATES = ('__dict__',)

def update_wrapper(wrapper,wrapped,
 assigned = WRAPPER_ASSIGNMENTS,
 updated = WRAPPER_UPDATES):

 ...

Friday, 11 April 14

We solved naming using functools.wrap()/
functools.update_wrapper() before, but what do they do.
Well wraps() just uses update_wrapper(), so we just need
to look at it. I'll show what is in Python 3.3, although that
actually has a bug in it, which is fixed in Python 3.4. :-)

What does functools.wraps() do?

WRAPPER_ASSIGNMENTS = ('__module__',
 '__name__', '__qualname__', '__doc__',
 '__annotations__')

WRAPPER_UPDATES = ('__dict__',)

def update_wrapper(wrapper,wrapped,
 assigned = WRAPPER_ASSIGNMENTS,
 updated = WRAPPER_UPDATES):

 ...

Friday, 11 April 14

Key thing to try and remember as we try and look at the
body of update_wrapper() is what is in these default
variables that get passed as 'assigned' and 'updated'.
Those in 'assigned' are what we were originally manually
assigning, plus some extras. The '__dict__' in 'updates' is
something new though so we need to see what is
happening with it.

It potentially does lots of copying

 wrapper.__wrapped__ = wrapped

 for attr in assigned:
 try:
 value = getattr(wrapped, attr)
 except AttributeError:
 pass
 else:
 setattr(wrapper, attr, value)

 for attr in updated:
 getattr(wrapper, attr).update(
 getattr(wrapped, attr, {}))

Friday, 11 April 14

Looking at the body of the function, three things are
being done. First off a reference to the wrapped function
is saved as __wrapped__. This is the bug, as it should be
done last. The second is to copy those attributes such as
__name__ and __doc__. Finally the third thing is to copy
the contents of __dict__ from the wrapped function into
the wrapper, which could actually result in quite a lot of
objects needing to be copied.

Using functools.wraps() is too slow

class bound_function_wrapper(object):

 def __init__(self, wrapped):
 self.wrapped = wrapped
 functools.update_wrapper(self, wrapped)

class function_wrapper(object):

 def __init__(self, wrapped):
 self.wrapped = wrapped
 functools.update_wrapper(self, wrapped)

Friday, 11 April 14

If we are using a function closure or straight class
wrapper this copying is able to be done at the point that
the decorator is applied. With the wrapper being a
descriptor though, it technically now also needs to be
done in the bound wrapper. As the bound wrapper is
created every time the wrapper is called for a function
bound to a class, this is going to be too slow. We need a
more performant way of handling this.

Transparent object proxy
class object_proxy(object):

 def __init__(self, wrapped):
 self.wrapped = wrapped
 try:
 self.__name__= wrapped.__name__
 except AttributeError:
 pass

 @property
 def __class__(self):
 return self.wrapped.__class__

 def __getattr__(self, name):
 return getattr(self.wrapped, name)

Friday, 11 April 14

The solution is what is called an object proxy. This is a
special wrapper class which looks and behaves like what
it wraps. It is a complicated beast in its own right, so I
am going to gloss over the details. In short though, it
copies limited attributes from the wrapped object to
itself, and otherwise uses special methods, properties
and __getattr__() to fetch attributes from the wrapped
object only when required.

Use object proxy as base class

class bound_function_wrapper(object_proxy):

 def __init__(self, wrapped):
 super(bound_function_wrapper,
 self).__init__(wrapped)

class function_wrapper(object_proxy):

 def __init__(self, wrapped):
 super(function_wrapper,
 self).__init__(wrapped)

Friday, 11 April 14

What we now do is derive our wrapper class from the
object proxy. Doing so, attributes like __name__ and
__doc__, when queried from the wrapper, return the
values from the wrapped function instead. Calls like
inspect.getargspec() and inspect.getsource() will also
work and return what we expect.

A decorator for creating decorators

@decorator
def my_function_wrapper(wrapped, args, kwargs):
 return wrapped(*args, **kwargs)

@my_function_wrapper
def function():
 pass

Friday, 11 April 14

So we have a pattern now for implementing a decorator
that appears to work correctly, but needing to do all that
each time is more work than we really want. What we can
do therefore is create a decorator to help us create
decorators. This would reduce the code we need to write
for each decorator to a single function as shown. What
would this decorator factory need to look like?

The decorator factory

def decorator(wrapper):
 @functools.wraps(wrapper)
 def _decorator(wrapped):
 return function_wrapper(wrapped, wrapper)
 return _decorator

Friday, 11 April 14

As it turns out, our decorator factory is quite simple and
isn't really much different to using a partial(), combining
our new wrapper function argument from when the
decorator is defined, with the wrapped function when the
decorator is used and passing them into our function
wrapper object.

Delegating function wrapper
class function_wrapper(object_proxy):

 def __init__(self, wrapped, wrapper):
 super(function_wrapper,
 self).__init__(wrapped)
 self.wrapper = wrapper

 def __get__(self, instance, owner):
 wrapped = self.wrapped.__get__(
 instance, owner)
 return bound_function_wrapper(wrapped,
 self.wrapper)

 def __call__(self, *args, **kwargs):
 return self.wrapper(self.wrapped, args,
 kwargs)

Friday, 11 April 14

The __call__() method of our function wrapper, for when
the wrapper is used around a normal function, now just
calls the decorator wrapper function with the wrapped
function and arguments, leaving the calling of the
wrapped function up to the decorator wrapper function.
In the case where binding a function, the wrapper is also
passed to the bound wrapper.

Delegating bound wrapper

class bound_function_wrapper(object_proxy):

 def __init__(self, wrapped, wrapper):
 super(bound_function_wrapper,
 self).__init__(wrapped)
 self.wrapper = wrapper

 def __call__(self, *args, **kwargs):
 return self.wrapper(self.wrapped, args,
 kwargs)

Friday, 11 April 14

The bound wrapper is more or less the same, with the
__call__() method delegating to the decorator wrapper
function. So we can make creating decorators easier
using a factory, lets see now what other problems we can
find.

Functions vs Methods

@decorator
def my_function_wrapper(wrapped, args, kwargs):
 print('ARGS', args)
 return wrapped(*args, **kwargs)

@my_function_wrapper
def function(a, b):
 pass

>>> function(1, 2)
ARGS (1, 2)

Friday, 11 April 14

The first such issue is creating decorators that can work
on both normal functions and instance methods of
classes. Changing our decorator to print out the args
passed for a normal function we obviously just get a
tuple of the two arguments.

Instance methods

class Class(object):

 @my_function_wrapper
 def function_im(self, a, b):
 pass

c = Class()

>>> c.function_im()
ARGS (1, 2)

Friday, 11 April 14

Do the same for an instance method and the result is the
same. The problem here is what if the decorator wanted
to know what the actual instance of the class was? We
have lost that information when the function was bound
to the class as it is now associated with the wrapped
function passed in, rather than the argument list.

Remembering the instance
class function_wrapper(object_proxy):

 def __init__(self, wrapped, wrapper):
 super(function_wrapper,
 self).__init__(wrapped)
 self.wrapper = wrapper

 def __get__(self, instance, owner):
 wrapped = self.wrapped.__get__(
 instance, owner)
 return bound_function_wrapper(wrapped,
 instance, self.wrapper)

 def __call__(self, *args, **kwargs):
 return self.wrapper(self.wrapped, None,
 args, kwargs)

Friday, 11 April 14

To solve this problem we can remember what the
instance was that was passed to the __get__() method
when it was called to bind the function. This can then be
passed through to the bound wrapper when it is created.

Passing the instance to the wrapper

class bound_function_wrapper(object_proxy):

 def __init__(self, wrapped, instance,
 wrapper):
 super(bound_function_wrapper,
 self).__init__(wrapped)
 self.instance = instance
 self.wrapper = wrapper

 def __call__(self, *args, **kwargs):
 return self.wrapper(self.wrapped,
 self.instance, args, kwargs)

Friday, 11 April 14

In the bound wrapper, the instance pointer can then be
passed through to the decorator wrapper function as an
extra argument. You may have missed it, but to be
uniform for the case of a normal function, in the top
level wrapper we passed None for this new instance
argument.

Distinguishing instance method
@decorator
def my_function_wrapper(wrapped, instance,
 args, kwargs):
 print('INSTANCE', instance)
 print('ARGS', args)
 return wrapped(*args, **kwargs)

>>> function(1, 2)
INSTANCE None
ARGS (1, 2)

>>> c.function_im(1, 2)
INSTANCE <__main__.Class object at 0x1085ca9d0>
ARGS (1, 2)

Friday, 11 April 14

This then allows us to be able to distinguish between a
normal function call and an instance method call within
the one decorator wrapper function. The reference to the
instance is even passed separately so we don't have to
juggle with the arguments to move it out of the way for
an instance method.

Calling instance method via class

>>> Class.function_im(c, 1, 2)
INSTANCE None
ARGS (<__main__.Class object at 0x1085ca9d0>,
 1, 2)

Friday, 11 April 14

Unfortunately we aren't done though, as when calling an
instance method via the class, passing in the instance as
an argument, the instance passed to the decorator
wrapper function is None. Instead the reference to the
instance gets passed through as the first argument.

Special case calling via class

class bound_function_wrapper(object_proxy):

 def __call__(self, *args, **kwargs):

 if self.instance is None:
 instance, args = args[0], args[1:]
 wrapped = functools.partial(
 self.wrapped, instance)
 return self.wrapper(wrapped,
 instance, args, kwargs)

 return self.wrapper(self.wrapped,
 self.instance, args, kwargs)

Friday, 11 April 14

To deal with this variation, we can check for instance
being None before calling the decorator wrapper
function and pop the instance off the start of the
argument list. We then use a partial to bind the instance
to the wrapped function ourselves and call the decorator
wrapper function. We then get the same result no matter
whether the instance method is called via the class or
not.

But we broke class methods

class Class(object):

 @my_function_wrapper
 @classmethod
 def function_cm(cls, a, b):
 pass

>>> Class.function_cm(1, 2)
INSTANCE 1
ARGS (2,)

Friday, 11 April 14

This fiddle does though upset things for when we have a
class method, also causing the same issue for a static
method. In both those cases the instance is also passed
as None. The result is that the real first argument ends
up as the instance, which is obviously going to be quite
wrong.

Split out class and static method

class function_wrapper(object_proxy):

 def __get__(self, instance, owner):
 wrapped = self.wrapped.__get__(
 instance, owner)

 if isinstance(self.wrapped,
 (classmethod, staticmethod)):
 bound_type = bound_function_wrapper
 else:
 bound_type = bound_method_wrapper

 return bound_type(wrapped, instance,
 self.wrapper)

Friday, 11 April 14

We can handle that in the top level wrapper by looking at
the type of the wrapped function prior to doing binding.
If it is a class method or static method, then we know
anything else is likely to be an instance method. For a
class or static method we use the original bound
function wrapper before the fiddle was added and move
the fiddle into a version of the wrapper specifically for
instance methods.

But the instance is still None

class Class(object):

 @my_function_wrapper
 @classmethod
 def function_cm(cls, a, b):
 pass

>>> Class.function_cm(1, 2)
INSTANCE None
ARGS (1, 2)

Friday, 11 April 14

We are still not quite there though. The argument list is
right again, but the instance is still None. For a static
method this is probably quite reasonable since it isn't
really much different to a normal function. For a class
method, it would be nice for the instance to actually be
the class type corresponding to the initial 'cls' argument
for the class method. The big question is whether there
is another way of getting this.

The bound class method knows all

class bound_function_wrapper(object_proxy):

 def __call__(self, *args, **kwargs):

 instance = getattr(self.wrapped,
 '__self__', None)

 return self.wrapper(self.wrapped,
 instance, args, kwargs)

Friday, 11 April 14

Turns out there is a way of still getting the class the
class method is bound to. This is by accessing the
__self__ attribute of the bound function. We therefore
ignore the instance the __get__() method was passed and
use the __self__ attribute instead.

Class and static seen as different

>>> c.function_im(1, 2)
INSTANCE <__main__.Class object at 0x1085ca9d0>
ARGS (1, 2)

>>> Class.function_cm(1, 2)
INSTANCE <class '__main__.Class'>
ARGS (1, 2)

>>> Class.function_sm(1, 2)
INSTANCE None
ARGS (1, 2)

Friday, 11 April 14

Success, finally. We now have the instance argument
for an instance method being the instance of the class.
For a class method it is the class itself, and for a normal
function, the instance is None.

Decorating a class

@my_function_wrapper
class Class(object): ...

>>> c = Class()
WRAPPED <class '__main__.Class'>
INSTANCE None
ARGS ()

Friday, 11 April 14

We have one more situation to consider though. That is
where we want to decorate a class. What happens then?
In this case the instance is still None, so from that we
cannot distinguish it from a normal function. If we also
look at the wrapped function though, we will see that it
is a class type, where as it would be a function in the
case of a normal function being called.

Universal decorator

@decorator
def universal(wrapped, instance, args, kwargs):
 if instance is None:
 if inspect.isclass(wrapped):
 # class.
 else:
 # function or staticmethod.
 else:
 if inspect.isclass(instance):
 # classmethod.
 else:
 # instancemethod.

Friday, 11 April 14

This works out okay though, because we can look at the
type of what is being wrapped in that case. This means
we now have the ability to create a universal decorator.
That is, a decorator that can determine what it is
wrapping. This does away with the need to create
separate decorators for functions and instance methods
which would otherwise do the same thing.

Required decorator arguments

def required_arguments(arg):
 @decorator
 def _wrapper(wrapped, instance, args, kwargs):
 return wrapped(*args, **kwargs)
 return _wrapper

@required_arguments(arg=1)
def function():
 pass

Friday, 11 April 14

Now, the decorators so far did not allow arguments to be
supplied when being applied to a function. If arguments
to the decorator are required, the decorator definition
can be nested within a function to create a function
closure. When the outer decorator factory function is
used, it returns the inner decorator function. Positional
or keyword arguments can be used, but keyword
arguments are possibly a better convention.

Optional decorator arguments

def optional_arguments(wrapped=None, arg=1):
 if wrapped is None:
 return functools.partial(
 optional_arguments, arg=arg)

 @decorator
 def _wrapper(wrapped, instance, args, kwargs):
 return wrapped(*args, **kwargs)
 return _wrapper(wrapped)

@optional_arguments(arg=2)
def function1():
 pass

Friday, 11 April 14

If arguments have default values, the outer decorator
factory would take the wrapped function as first
argument with None as a default. The decorator
arguments follow. Decorator arguments would now be
passed as keyword arguments. On the first call, wrapped
will be None, and a partial is used to return the
decorator factory again. On the second call, wrapped is
passed and this time it is wrapped with the decorator.

No need to supply arguments

def optional_arguments(wrapped=None, arg=1):
 if wrapped is None:
 return functools.partial(
 optional_arguments, arg=arg)

 @decorator
 def _wrapper(wrapped, instance, args, kwargs):
 return wrapped(*args, **kwargs)
 return _wrapper(wrapped)

@optional_arguments
def function2():
 pass

Friday, 11 April 14

Because we have default arguments though, we don't
actually need to pass the arguments, in which case the
decorator factory is applied direct to the function being
decorated. Because wrapped is not None when passed in,
the decorator is wrapped around the function
immediately, skipping the return of the factory a second
time.

Forcing keyword arguments

def required_arguments(*, arg):
 @decorator
 def _wrapper(wrapped, instance, args, kwargs):
 return wrapped(*args, **kwargs)
 return _wrapper

def optional_arguments(wrapped=None, *, arg=1):
 if wrapped is None:
 return functools.partial(
 optional_arguments, arg=arg)

 @decorator
 def _wrapper(wrapped, instance, args, kwargs):
 return wrapped(*args, **kwargs)
 return _wrapper(wrapped)

Friday, 11 April 14

Now why I said a convention of having keyword
arguments is preferable, is that Python 3 allows you to
enforce it using the new keyword only argument syntax.
This way you avoid the problem of someone passing in a
decorator argument as the positional argument for
wrapped. For consistency, keyword only arguments can
also be enforced for required arguments even though it
isn't strictly necessary.

It can do everything

• Preserves __name__.

• Preserves __doc__.

• Signature from inspect.getargspec() is correct.

• Source code from inspect.getsource() is correct.

• Decorators can be aware of the context they are used in.

• Decorator arguments are easily supported.

• Optional decorator arguments are also possible.

Friday, 11 April 14

The final result is that we now have a means of creating
decorators that preserves the function name,
documentation strings, argument specification and even
retrieving of source code. One decorator can be used on
classes, functions, instance methods and class methods.
It is also easy to support decorator arguments, even
allowing them to be optional if desired.

Want more detail?

• Decorator blog post series.

• blog: http://blog.dscpl.com.au/search/label/decorators

• index: https://github.com/GrahamDumpleton/wrapt/tree/master/blog

Friday, 11 April 14

This has been a whirlwind tour of this topic. As much as I
covered it still doesn't actually cover everything I could.
As I wasn't expecting to be doing this talk here at PyCon,
in January this year I started a more in depth series of
blog posts on this topic. You can find these on my blog
site, or via the more easily parsed index I have created
on github. Although I have paused for now, expect more
posts in this series.

https://github.com/GrahamDumpleton/wrapt/tree/master/blog
https://github.com/GrahamDumpleton/wrapt/tree/master/blog

Use the 'wrapt' package

• wrapt - A Python module for decorators, wrappers and
monkey patching.

• docs: http://wrapt.readthedocs.org/

• github: https://github.com/GrahamDumpleton/wrapt

• pypi: https://pypi.python.org/pypi/wrapt

Graham.Dumpleton@gmail.com
@GrahamDumpleton

Friday, 11 April 14

So as you probably already knew, decorators are a quite
simple concept. Or at least should I say that they can be
made to be simple to use. The actual work involved in
getting them to work properly is a lot more. Rather than
replicate all of what I discussed, I have created a package
that bundles up all this magic. This package is called
'wrapt' and you can find source code on github and
install it from PyPi.

https://pypi.python.org/pypi/wrapt
https://pypi.python.org/pypi/wrapt
mailto:Graham.Dumpleton@gmail.com
mailto:Graham.Dumpleton@gmail.com

