
So You Want To!
Build An API?

findme@meganspeir.com

I’M MEGAN

Welcome To PyCon.!
Home Of Python. !
May I Show You

Something?

So, You Want To 
Build An API?

Maybe A Web API…  
for Good Burger

We are going to look
at the best practices of
designing a web API
and the patterns in

Flask we may use to
get there.

Actually, Let’s
Design Two APIs

But First…

Where Do Best
Practices Come From?

Because that’s what we need for the web API.

“Ultimately it comes down
to taste. It comes down to

trying to expose yourself, to
the best things that humans
have done. And then try to

bring those things in to
what you're doing.”

–Steven P. Jobs

And Where Do
Patterns Come From?

Because that’s what we need for the Flask.

Lazy Developers Who
Are Smarter Than You

Look to your left… Look to your right…

Choose Your Flavor
And your tools.

Design All The
Documents

Then write all the code.

But Wait…
What’s A Web API?

I was hoping you wouldn’t ask. I’m hungry already.

In short. It is an API that
conforms to REST design
principles. Being defined
by a resource that acts
upon a representation
through HTTP verbs.

Defining The Resource
A conceptual mapping to a set of entities, not the

entity that corresponds to the mapping at any
particular point in time.

Designing An Identifier
The partial or complete identifier to the particular

resource involved in an interaction between components.
(URI) We will call these endpoints.!

!
/goodburger.com

Use Your Words
nouns - plurals - not abstract

!
/goodburger.com/burgers

Route Decorators
@app.route('/burgers/', methods=[‘GET’])

!
@app.route(‘/burgers/<int:burger_id>, methods=['GET'])

Method Views
burgers_view = UserAPI.as_view('burgers_api')
app.add_url_rule('/burgers/',
 defaults={'burger_id': None},
 view_func=burgers_view,
 methods=['GET',])
app.add_url_rule('/burgers/<int:burger_id>',
 view_func=burgers_view,
 methods=['GET'])

RESTyle
@resource.identifier('/burgers/<int:burger_id>')

And A Subdomain
api - graph - search - stream

!
/api.goodburger.com/burgers

Version
no dots - no date - major only

!
/api.goodburger.com/v1/burgers

Hard Code
@app.route(‘/v1/burgers/', methods=[‘GET’])

!
@app.route(‘/v1/burgers/<int:burger_id>, methods=['GET'])

Blueprints
app.register_blueprint(burgers.resource, url_prefix=‘/v1’)

All The
Good Burgers
/api.goodburger.com/v1/burgers

Designing A
Representation

A sequence of bytes, plus representation  
metadata to describe those bytes.

Again, Use Your Words
{
 "burger_name": "Double-Double",
!
 "ingredients": {
 "bun": “sesame",
 "patty_number": “2”,
 "sauce": "secret"
 }
}

Design A Schema
public_schema = {
 'burger_name': types.String(attribute='code_name'),
 'ingredients': {
 'condiments': types.String(attribute='toppings'),
 ‘patty_number': types.Integer()
 }
}
!
private_schema = {
 'burger_name': types.String(attribute='code_name'),
 'ingredients': {
 'bun': types.String(default='sesame'),
 'patty_number': types.Integer(),
 'sauce': types.String()
 }
}

Errors For Humans™

Really?
{
 "status": "500",
 "message": "Bailing out, sorry dude!"
}
!
{
 "status”: "501",
 "message”: "WTF just happened?"
}

For Spatch
{
 "status": "500",
 "message": "Verbose message here."
}
!
{
 "status”: "501",
 "message”: "ALL the information I need."
}

Metadata
Tell me about yourself.!

!

Formats
Use JSON.

!
Content-Type: application/json; charset=utf-8

Relationships
Maybe you’d like my friend.

Control Data
All your requests belong to us.

Headers
It’s all in your head.

What You May Want.
But maybe not what you’ll need.

Borrow A Data Structure

from werkzeug.datastructures import Headers
!
headers = Headers()
!
headers.add('Server', 'Burger Server')
headers.add('Strict-Transport-Security', 'max-age=31536000')
headers.add('X-XSS-Protection', '1; mode=block')
headers.add('X-Content-Type-Options', 'nosniff')
headers.add('X-Frame-Options', ‘deny')
!
response.headers.extend(headers)

Cache-Control
Refrigerate after opening.

Rate limiting
Because even if Humans don't love you, robots will.

X-RateLimit-Limit: 60
X-RateLimit-Remaining: 34
X-RateLimit-Reset: 1397284381

Authentication
Makes my Heartbleed.

Parting Thoughts

Thank You.
findme@meganspeir.com

Copyright © 2014 Megan Speir. All rights reserved.

Images courtesy of Good Burger (1997). Watch the movie.

