Applied Predictive Modeling in R R useR! 2014 Max Kuhn, Ph.D Pfizer Global R&D Groton, CT max.kuhn@pfizer.com #### **Outline** - Conventions in R - Data Splitting and Estimating Performance - Data Pre-Processing - Over–Fitting and Resampling - Training and Tuning Tree Models - Training and Tuning A Support Vector Machine - Comparing Models - Parallel Processing ### Predictive Modeling Predictive modeling (aka machine learning)(aka pattern recognition)(...) aims to generate the most accurate estimates of some quantity or event. As these models are not generally meant to be *descriptive* and are usually not well–suited for inference. Good discussions of the contrast between predictive and descriptive/inferential models can be found in Shmueli (2010) and Breiman (2001) Frank Harrell's Design package is very good for modern approaches to interpretable models, such as Cox's proportional hazards model or ordinal logistic regression. Hastie et al (2009) is a good reference for theoretical descriptions of these models while Kuhn and Johnson (2013) focus on the practice of predictive modeling (and uses R). # Modeling Conventions in R #### The Formula Interface There are two main conventions for specifying models in R: the formula interface and the non-formula (or "matrix") interface. For the former, the predictors are explicitly listed in an R formula that looks like: $y \sim var1 + var2...$ For example, the formula ``` > modelFunction(price ~ numBedrooms + numBaths + acres, + data = housingData) ``` would predict the closing price of a house using three quantitative characteristics. #### The Formula Interface The shortcut $y \sim .$ can be used to indicate that all of the columns in the data set (except y) should be used as a predictor. The formula interface has many conveniences. For example, transformations, such as log(acres) can be specified in—line. It also autmatically converts factor predictors into dummy variables (using a less than full rank encoding). For some R functions (e.g. klaR:::NaiveBayes, rpart:::rpart, C50:::C5.0, ...), predictors are kept as factors. Unfortunately, R does not efficiently store the information about the formula. Using this interface with data sets that contain a large number of predictors may unnecessarily slow the computations. #### The Matrix or Non–Formula Interface The non-formula interface specifies the predictors for the model using a matrix or data frame (all the predictors in the object are used in the model). The outcome data are usually passed into the model as a vector object. For example: ``` > modelFunction(x = housePredictors, y = price) ``` In this case, transformations of data or dummy variables must be created prior to being passed to the function. Note that not all R functions have both interfaces. ### **Building and Predicting Models** Modeling in R generally follows the same workflow: Oreate the model using the basic function: ``` fit <- knn(trainingData, outcome, k = 5) ``` - Assess the properties of the model using print, plot. summary or other methods - Operation of the predict outcomes for samples using the predict method: predict(fit, newSamples). The model can be used for prediction without changing the original model object. ### Model Function Consistency Since there are many modeling packages written by different people, there are some inconsistencies in how models are specified and predictions are made. For example, many models have only one method of specifying the model (e.g. formula method only) ## Generating Class Probabilities Using Different Packages | obj Class | Package | predict Function Syntax | |------------------|---------|---| | lda | MASS | <pre>predict(obj) (no options needed)</pre> | | glm | stats | <pre>predict(obj, type = "response")</pre> | | gbm | gbm | <pre>predict(obj, type = "response", n.trees)</pre> | | mda | mda | <pre>predict(obj, type = "posterior")</pre> | | rpart | rpart | <pre>predict(obj, type = "prob")</pre> | | Weka | RWeka | <pre>predict(obj, type = "probability")</pre> | | LogitBoost | caTools | <pre>predict(obj, type = "raw", nIter)</pre> | ## type = "what?" (Per Package) #### The caret Package The caret package was developed to: - create a unified interface for modeling and prediction (interfaces to 150 models) - streamline model tuning using resampling - provide a variety of "helper" functions and classes for day—to—day model building tasks - increase computational efficiency using parallel processing First commits within Pfizer: 6/2005, First version on CRAN: 10/2007 Website: http://topepo.github.io/caret/ JSS Paper: http://www.jstatsoft.org/v28/i05/paper Model List: http://topepo.github.io/caret/bytag.html Applied Predictive Modeling Blog: http://appliedpredictivemodeling.com/ We'll use data from Hill *et al* (2007) to model how well cells in an image are segmented (i.e. identified) in "high content screening" (Abraham *et al*, 2004). Cells can be stained to bind to certain components of the cell (e.g. nucleus) and fixed in a substance that preserves the nature state of the cell. The sample is then interrogated by an instrument (such as a confocal microscope) where the dye deflects light and the detectors quantify that degree of scattering for that specific wavelength. If multiple characteristics of the cells are desired, then multiple dyes and multiple light frequencies can be used simultaneously. The light scattering measurements are then processed through imaging software to quantify the desired cell characteristics. In these images, the bright green boundaries identify the cell nucleus, while the blue boundaries define the cell perimeter. Clearly some cells are well—segmented, meaning that they have an accurate assessment of the location and size of the cell. Others are poorly segmented. If cell size, shape, and/or quantity are the endpoints of interest in a study, then it is important that the instrument and imaging software can correctly segment cells. Given a set of image measurements, how well can we predict which cells are well–segmented (WS) or poorly–segmented (PS)? The authors scored 2019 cells into these two bins. They used four stains to highlight the cell body, the cell nucleus, actin and tubulin (parts of the cytoskeleton). These correspond to different optical channels (e.g. channel 3 measures actin filaments). The data are in the caret package. The authors designated a training set (n = 1009) and a test set (n = 1010). # Data Splitting and Estimating Performance #### Model Building Steps Common steps during model building are: - estimating model parameters (i.e. training models) - determining the values of tuning parameters that cannot be directly calculated from the data - calculating the performance of the final model that will generalize to new data How do we "spend" the data to find an optimal model? We typically split data into training and test data sets: - Training Set: these data are used to estimate model parameters and to pick the values of the complexity parameter(s) for the model. - **Test Set** (aka validation set): these data can be used to get an independent assessment of model efficacy. They should not be used during model training. #### Spending Our Data The more data we spend, the better estimates we'll get (provided the data is accurate). Given a fixed amount of data, - too much spent in training won't allow us to get a good assessment of predictive performance. We may find a model that fits the training data very well, but is not generalizable (over-fitting) - too much spent in testing won't allow us to get a good assessment of model parameters Statistically, the best course of action would be to use all the data for model building and use statistical methods to get good estimates of error. From a non-statistical perspective, many consumers of of these models emphasize the need for an untouched set of samples the evaluate performance. #### Spending Our Data There are a few different ways to do the split: simple random sampling, stratified sampling based on the outcome, by date and methods that focus on the distribution of the predictors. The base R function sample can be used to create a completely random sample of the data. The caret package has a function createDataPartition that conducts data splits within groups of the data. For classification, this would mean sampling within the classes as to preserve the distribution of the outcome in the training and test sets For regression, the function determines the quartiles of the data set and samples within those groups The segmentation data comes pre-split and we will use the original training and test sets. ``` > library(caret) > data(segmentationData) > # get rid of the cell identifier > segmentationData$Cell <- NULL > training <- subset(segmentationData, Case == "Train") > testing <- subset(segmentationData, Case == "Test") > training$Case <- NULL > testing$Case <- NULL</pre> ``` Since channel 1 is the cell body, AreaCh1 measures the size of the cell. ``` > str(training[,1:9]) 'data.frame': 1009 obs. of 9 variables: $ Class : Factor w/ 2 levels "PS", "WS": 1 2 1 2 1 1 1 2 2 AngleCh1 133.8 106.6 69.2 109.4 104.3 ... : num AreaCh1 819 431 298 256 258 358 158 315 246 223 ... : int AvgIntenCh1 31.9 28 19.5 18.8 17.6 ... : num AvgIntenCh2 207 116 102 127 125 ... : num AvgIntenCh3 69.9 63.9 28.2 13.6 22.5 ... : num AvgIntenCh4 : num 164.2 106.7 31 46.8 71.2 ... ConvexHullAreaRatioCh1: num 1.26 1.05 1.2 1.08 1.08 ... $ ConvexHullPerimRatioCh1: num 0.797 0.935 0.866 0.92 0.931 ... > > cell_lev <- levels(testing$Class)</pre> ``` Since channel 1 is the cell body, AreaCh1 measures the size of the cell. ### **Estimating Performance** Later, once you have a set of predictions, various metrics can be used to evaluate performance. #### For regression models: - R^2 is very popular. In many complex models, the notion of the model degrees of freedom is difficult. Unadjusted R^2
can be used, but does not penalize complexity. (caret:::Rsquared, pls:::R2) - the root mean square error is a common metric for understanding the performance (caret:::RMSE, pls:::RMSEP) - Spearman's correlation may be applicable for models that are used to rank samples (cor(x, y, method = "spearman")) Of course, honest estimates of these statistics cannot be obtained by predicting the same samples that were used to train the model. A test set and/or resampling can provide good estimates. #### For classification models: - overall accuracy can be used, but this may be problematic when the classes are not balanced. - the **Kappa statistic** takes into account the expected error rate: $$\kappa = \frac{O - E}{1 - E}$$ where O is the observed accuracy and E is the expected accuracy under chance agreement (psych:::cohen.kappa, vcd:::Kappa, ...) • For 2-class models, **Receiver Operating Characteristic** (ROC) curves can be used to characterize model performance (more later) A "confusion matrix" is a cross-tabulation of the observed and predicted classes R functions for confusion matrices are in the e1071 package (the classAgreement function), the caret package (confusionMatrix), the mda (confusion) and others. ROC curve functions are found in the ROCR package (performance), the verification package (roc.area), the pROC package (roc) and others. We'll use the confusionMatrix function and the pROC package later in this class. For 2-class classification models we might also be interested in: - **Sensitivity**: given that a result is truly an event, what is the probability that the model will predict an event results? - **Specificity**: given that a result is truly not an event, what is the probability that the model will predict a negative results? (an "event" is really the event of interest) These *conditional* probabilities are directly related to the false positive and false negative rate of a method. Unconditional probabilities (the positive–predictive values and negative–predictive values) can be computed, but require an estimate of what the overall event rate is in the population of interest (aka the prevalence) For our example, let's choose the event to be the **poor segmentation** (PS): Sensitivity = $$\frac{\text{\# PS predicted to be PS}}{\text{\# true PS}}$$ Specificity = $$\frac{\text{# true WS to be WS}}{\text{# true WS}}$$ The caret package has functions called sensitivity and specificity #### **ROC Curve** With two classes the Receiver Operating Characteristic (ROC) curve can be used to estimate performance using a combination of sensitivity and specificity. Given the probability of an event, many alternative cutoffs can be evaluated (instead of just a 50% cutoff). For each cutoff, we can calculate the sensitivity and specificity. The ROC curve plots the sensitivity (eg. true positive rate) by one minus specificity (eg. the false positive rate). The area under the ROC curve is a common metric of performance. #### ROC Curve From Class Probabilities 990 # Data Pre-Processing #### Pre-Processing the Data There are a wide variety of models in R. Some models have different assumptions on the predictor data and may need to be pre-processed. For example, methods that use the inverse of the predictor cross–product matrix (i.e. $(X'X)^{-1}$) may require the elimination of collinear predictors. Others may need the predictors to be centered and/or scaled, etc. If any data processing is required, it is a good idea to base these calculations on the training set, then apply them to any data set used for model building or prediction. #### Pre-Processing the Data #### Examples of of pre–processing operations: - centering and scaling - imputation of missing data - transformations of individual predictors (e.g. Box–Cox transformations of the *predictors*) - transformations of the groups of predictors, such as the - the "spatial-sign" transformation (i.e. x' = x/||x||) - feature extraction via PCA or ICA ### Centering, Scaling and Transforming There are a few different functions for data processing in R: - scale in base R - ScaleAdv in pcaPP - stdize in pls - preProcess in caret - normalize in sparseLDA The first three functions do simple centering and scaling. preProcess can do a variety of techniques, so we'll look at this in more detail. #### Centering and Scaling The input is a matrix or data frame of predictor data. Once the values are calculated, the predict method can be used to do the actual data transformations. First, estimate the standardization parameters . . . ``` > trainX <- training[, names(training) != "Class"] > ## Methods are "BoxCox", "YeoJohnson", center", "scale", > ## "range", "knnImpute", "bagImpute", "pca", "ica", > ## "spatialSign", "medianImpute", "expoTrans" > preProcValues <- preProcess(trainX, method = c("center", "scale")) > preProcValues Call: preProcess.default(x = trainX, method = c("center", "scale")) Created from 1009 samples and 58 variables Pre-processing: centered, scaled ``` ## Centering and Scaling ``` ...then apply them to the data sets: ``` ``` > scaledTrain <- predict(preProcValues, trainX)</pre> ``` ### Pre-Processing and Resampling To get honest estimates of performance, all data transformations should be included within the cross-validation loop. The would be especially true for feature selection as well as pre-processing techniques (e.g. imputation, PCA, etc) One function considered later called train that can apply preProcess within resampling loops. # Over-Fitting and Resampling ### Over-Fitting Over-fitting occurs when a model inappropriately picks up on trends in the training set that do not generalize to new samples. When this occurs, assessments of the model based on the training set can show good performance that does not reproduce in future samples. Some models have specific "knobs" to control over-fitting - neighborhood size in nearest neighbor models is an example - the number if splits in a tree model Often, poor choices for these parameters can result in over-fitting For example, the next slide shows a data set with two predictors. We want to be able to produce a line (i.e. decision boundary) that differentiates two classes of data. Two model fits are shown; one over—fits the training data. ## The Data ### Two Model Fits ## Characterizing Over–Fitting Using the Training Set One obvious way to detect over—fitting is to use a test set. However, repeated "looks" at the test set can also lead to over—fitting Resampling the training samples allows us to know when we are making poor choices for the values of these parameters (the test set is not used). Resampling methods try to "inject variation" in the system to approximate the model's performance on future samples. We'll walk through several types of resampling methods for training set samples. ### K-Fold Cross-Validation Here, we randomly split the data into K distinct blocks of roughly equal size. - We leave out the first block of data and fit a model. - This model is used to predict the held-out block - $oldsymbol{0}$ We continue this process until we've predicted all K held-out blocks The final performance is based on the hold-out predictions ${\cal K}$ is usually taken to be 5 or 10 and leave one out cross—validation has each sample as a block **Repeated** K-fold CV creates multiple versions of the folds and aggregates the results (I prefer this method) caret:::createFolds, caret:::createMultiFolds ### K-Fold Cross-Validation ## Repeated Training/Test Splits (aka leave-group-out cross-validation) A random proportion of data (say 80%) are used to train a model while the remainder is used for prediction. This process is repeated many times and the average performance is used. These splits can also be generated using stratified sampling. With many iterations (20 to 100), this procedure has smaller variance than K-fold CV, but is likely to be biased. caret:::createDataPartition ## Repeated Training/Test Splits ### Bootstrapping Bootstrapping takes a random sample with replacement. The random sample is the same size as the original data set. Samples may be selected more than once and each sample has a 63.2% chance of showing up at least once. Some samples won't be selected and these samples will be used to predict performance. The process is repeated multiple times (say 30–100). This procedure also has low variance but non–zero bias when compared to K–fold CV. sample, caret:::createResample # Bootstrapping ### The Big Picture We think that resampling will give us honest estimates of future performance, but there is still the issue of which model to select. One algorithm to select models: Define sets of model parameter values to evaluate; for each parameter set do for each resampling iteration do Hold-out specific samples; Fit the model on the remainder; Predict the hold-out samples; end Calculate the average performance across hold—out predictions #### end Determine the optimal parameter set; ### K-Nearest Neighbors Classification ### The Big Picture – KNN Example Using k-nearest neighbors as an example: Randomly put samples into 10 distinct groups; for $$i = 1 ... 30$$ do Create a bootstrap sample; Hold-out data not in sample; for $$k = 1, 3, ... 29$$ do Fit the model on the boostrapped sample; Predict the i^{th} holdout and save results; #### end Calculate the average accuracy across the 30 hold—out sets of predictions #### end Determine k based on the highest cross–validated accuracy; ### The Big Picture – KNN Example ### A General Strategy There is usually a inverse relationship between model flexibility/power and interpretability. In the best case, we would like a parsimonious and interpretable model that has excellent performance. Unfortunately, that is not usually realistic. #### One strategy: - start with the most powerful black-box type models - 2 get a sense of the best possible performance - then fit more simplistic/understandable models - evaluate the performance cost of using a simpler model # Training
and Tuning Tree Models ### Classification Trees A classification tree searches through each predictor to find a value of a single variable that best splits the data into two groups. typically, the best split minimizes impurity of the outcome in the resulting data subsets. For the two resulting groups, the process is repeated until a hierarchical structure (a tree) is created. • in effect, trees partition the X space into rectangular sections that assign a single value to samples within the rectangle. ### An Example First Split ### The Next Round of Splitting ### An Example There are many tree—based packages in R. The main package for fitting single trees are rpart, RWeka, evtree, C50 and party. rpart fits the classical "CART" models of Breiman *et al* (1984). To obtain a shallow tree with rpart: ``` > library(rpart) > rpart1 <- rpart(Class ~ ., data = training, control = rpart.control(maxdepth = 2)) > rpart1 n= 1009 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 1009 373 PS (0.63033 0.36967) 2) TotalIntenCh2< 4.532e+04 454 34 PS (0.92511 0.07489) 4) IntenCoocASMCh3< 0.6022 447 27 PS (0.93960 0.06040) * 5) IntenCoocASMCh3>=0.6022 7 0 WS (0.00000 1.00000) * 3) TotalIntenCh2>=4.532e+04 555 216 WS (0.38919 0.61081) 6) FiberWidthCh1< 9.673 154 47 PS (0.69481 0.30519) * 7) FiberWidthCh1>=9.673 401 109 WS (0.27182 0.72818) * ``` ### Visualizing the Tree The rpart package has functions plot.rpart and text.rpart to visualize the final tree. The partykit package also has enhanced plotting functions for recursive partitioning. We can convert the rpart object to a new class called party and plot it to see more in the terminal nodes: ``` > rpart1a <- as.party(rpart1) > plot(rpart1a) ``` ### A Shallow rpart Tree Using the party Package ### Tree Fitting Process Splitting would continue until some criterion for stopping is met, such as the minimum number of observations in a node The largest possible tree may over-fit and "pruning" is the process of iteratively removing terminal nodes and watching the changes in resampling performance (usually 10–fold CV) There are many possible pruning paths: how many possible trees are there with 6 terminal nodes? Trees can be indexed by their maximum depth and the classical CART methodology uses a cost-complexity parameter (C_p) to determine best tree depth #### The Final Tree Previously, we told rpart to use a maximum of two splits. By default, rpart will conduct as many splits as possible, then use 10-fold cross-validation to prune the tree. Specifically, the "one SE" rule is used: estimate the standard error of performance for each tree size then choose the simplest tree within one standard error of the absolute best tree size. ``` > rpartFull <- rpart(Class ~ ., data = training)</pre> ``` ## Tree Growing and Pruning Full Tree Start Pruning Too Much! #### The Final Tree ``` > rpartFull n = 1009 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 1009 373 PS (0.63033 0.36967) 2) TotalIntenCh2< 4.532e+04 454 34 PS (0.92511 0.07489) 4) IntenCoocASMCh3< 0.6022 447 27 PS (0.93960 0.06040) * 5) IntenCoocASMCh3>=0.6022 7 0 WS (0.00000 1.00000) * 3) TotalIntenCh2>=4.532e+04 555 216 WS (0.38919 0.61081) 6) FiberWidthCh1< 9.673 154 47 PS (0.69481 0.30519) 12) AvgIntenCh1< 323.9 139 33 PS (0.76259 0.23741) * 7) FiberWidthCh1>=9.673 401 109 WS (0.27182 0.72818) 14) ConvexHullAreaRatioCh1>=1.174 63 26 PS (0.58730 0.41270) 28) VarIntenCh4>=172 19 2 PS (0.89474 0.10526) * 29) VarIntenCh4< 172 44 20 WS (0.45455 0.54545) 58) KurtIntenCh3< 4.05 24 8 PS (0.66667 0.33333) * 59) KurtIntenCh3>=4.05 20 4 WS (0.20000 0.80000) * 15) ConvexHullAreaRatioCh1< 1.174 338 72 WS (0.21302 0.78698) 30) ShapeP2ACh1>=1.304 179 53 WS (0.29609 0.70391) 60) AvgIntenCh4>=375.2 17 2 PS (0.88235 0.11765) * 61) AvgIntenCh4< 375.2 162 38 WS (0.23457 0.76543) 122) LengthCh1< 20.93 10 3 PS (0.70000 0.30000) * 123) LengthCh1>=20.93 152 31 WS (0.20395 0.79605) 246) NeighborMinDistCh1< 22.03 32 14 WS (0.43750 0.56250) 492) AvgIntenCh1< 110.6 16 3 PS (0.81250 0.18750) * 247) NeighborMinDistCh1>=22.03 120 17 WS (0.14167 0.85833) * 31) ShapeP2ACh1< 1.304 159 19 WS (0.11950 0.88050) * ``` ### The Final rpart Tree #### Test Set Results ``` > rpartPred <- predict(rpartFull, testing, type = "class")</pre> > confusionMatrix(rpartPred, testing$Class) # requires 2 factor vectors Confusion Matrix and Statistics Reference Prediction PS WS PS 561 108 WS 103 238 Accuracy: 0.791 95% CI: (0.765, 0.816) No Information Rate: 0.657 P-Value [Acc > NIR] : <2e-16 Kappa : 0.535 Mcnemar's Test P-Value: 0.783 Sensitivity: 0.845 Specificity: 0.688 Pos Pred Value: 0.839 Neg Pred Value: 0.698 Prevalence: 0.657 Detection Rate: 0.555 Detection Prevalence: 0.662 Balanced Accuracy: 0.766 'Positive' Class: PS ``` ### Manually Tuning the Model CART conducts an internal 10-fold CV to tune the model to be within one SE of the absolute minimum. We might want to tune the model ourselves for several reasons: - 10-Fold CV can be very noisy for small to moderate sample sizes - We might want to risk some over—fitting in exchange for higher performance - Using a performance metric other than error may be preferable, especially with severe class imbalances. - ullet We can manually make tradeoffs between sensitivity and specificity for different values of C_p To this end, we will look at the train function in the caret package. ### Tuning the Model There are a few functions that can be used for this purpose in R. - the errorest function in the ipred package can be used to resample a single model (e.g. a gbm model with a specific number of iterations and tree depth) - the e1071 package has a function (tune) for five models that will conduct resampling over a grid of tuning values. - caret has a similar function called train for over 150 models. Different resampling methods are available as are custom performance metrics and facilities for parallel processing. The basic syntax for the function is: ``` > rpartTune <- train(formula, data, method)</pre> ``` Looking at ?train, using method = "rpart" can be used to tune a tree over C_p , so we can use: ``` > rpartTune <- train(Class ~ ., data = training, + method = "rpart")</pre> ``` We'll add a bit of customization too. By default, the function will tune over 3 values of the tuning parameter (C_p) for this model. For rpart, the train function determines the distinct number of values of C_p for the data. The tuneLength function can be used to evaluate a broader set of models: The default resampling scheme is the bootstrap. Let's use repeated 10-fold cross-validation instead. To do this, there is a control function that handles some of the optional arguments. To use five repeats of 10-fold cross-validation, we would use Also, the default CART algorithm uses overall accuracy and the one standard—error rule to prune the tree. We might want to choose the tree complexity based on the largest absolute area under the ROC curve. A custom performance function can be passed to train. The package has one that calculates the ROC curve, sensitivity and specificity: We can pass the twoClassSummary function in through trainControl. However, to calculate the ROC curve, we need the model to predict the class probabilities. The classProbs option will also do this: Finally, we tell the function to optimize the area under the ROC curve using the metric argument: #### train Results ``` > rpartTune CART 1009 samples 58 predictors 2 classes: 'PS', 'WS' No pre-processing Resampling: Cross-Validated (10 fold, repeated 5 times) Summary of sample sizes: 909, 907, 908, 908, 908, 909, ... Resampling results across tuning parameters: ROC Sens Spec ROC SD Sens SD Spec SD ср 0.005 0.9 0.8 0.7 0.04 0.04 0.06 0.07 0.008 0.8 0.8 0.7 0.04 0.04 0.05 0.01 0.8 0.8 0.7 0.05 0.06 0.8 0.8 0.7 0.04 0.07 0.02 0.05 0.02 0.8 0.8 0.7 0.05 0.04 0.07 0.02 0.8 0.8 0.7 0.04 0.04 0.07 0.8 0.8 0.04 0.03 0.8 0.04 0.08 0.8 0.8 0.04 0.7 0.04 0.09 0.03 0.8 0.7 0.09 0.2 0.9 0.04 0.08 0.3 0.2 0.7 0.8 0.5 0.1 0.4 ``` ROC was used to select the optimal model using the largest value. The final value used for the model was cp = 0.005. ## Working With the train Object There are a few methods of interest: - plot.train can be used to plot the resampling profiles across the different models - print.train shows a textual description of the results - predict.train can be used to predict new samples - there are a few others that we'll mention shortly. Additionally, the final model fit (i.e. the model with the best resampling results) is in a sub-object called finalModel. So in our example, rpartTune is of class train and the object rpartTune\$finalModel is of class rpart. Let's look at what the plot method does. ### Resampled ROC Profile ``` plot(rpartTune, scales = list(x = list(log = 10))) ``` # Resampled ROC Profile ggplot(rpartTune) + scale_x_log10() ## Predicting New Samples There are at least two ways to get predictions from a train object: - predict(rpartTune\$finalModel, newdata, type = "class") - predict(rpartTune, newdata) The first method uses predict.rpart. If there is any extra or non-standard syntax, this must also be specified. predict.train does the same thing, but takes care of any minutia that is specific to the predict method in question. #### Test Set Results ``` > rpartPred2 <- predict(rpartTune, testing)</pre> > confusionMatrix(rpartPred2, testing$Class) Confusion Matrix and Statistics Reference Prediction PS WS PS 539 89 WS 125 257 Accuracy: 0.788 95% CI: (0.762, 0.813) No Information Rate: 0.657 P-Value [Acc > NIR] : <2e-16 Kappa : 0.541 Mcnemar's Test P-Value: 0.0167 Sensitivity: 0.812 Specificity: 0.743 Pos Pred Value: 0.858 Neg Pred Value: 0.673 Prevalence: 0.657 Detection Rate: 0.534 Detection Prevalence: 0.622 Balanced Accuracy: 0.777 'Positive' Class: PS ``` ## Predicting Class Probabilities predict.train has an argument type that can be used to get predicted class probabilities for different models: #### Creating the ROC
Curve The pROC package can be used to create ROC curves. The function roc is used to capture the data and compute the ROC curve. The functions plot.roc and auc.roc generate plot and area under the curve, respectively. ### Classification Tree ROC Curve ## Pros and Cons of Single Trees Trees can be computed very quickly and have simple interpretations. Also, they have built-in feature selection; if a predictor was not used in any split, the model is completely independent of that data. Unfortunately, trees do not usually have optimal performance when compared to other methods. Also, small changes in the data can drastically affect the structure of a tree. This last point has been exploited to improve the performance of trees via ensemble methods where many trees are fit and predictions are aggregated across the trees. Examples are bagging, **boosting** and random forests. ## **Boosting Algorithms** A method to "boost" weak learning algorithms (e.g. single trees) into strong learning algorithms. Boosted trees try to improve the model fit over different trees by considering past fits (not unlike iteratively reweighted least squares) The basic tree boosting algorithm: ``` Initialize equal weights per sample; ``` ``` for j = 1 \dots M iterations do ``` Fit a classification tree using sample weights (denote the model equation as $f_j(x)$); forall the misclassified samples do increase sample weight #### end Save a "stage—weight" (β_j) based on the performance of the current model; end # Boosted Trees (Original "adaBoost" Algorithm) In this formulation, the categorical response y_i is coded as either $\{-1,1\}$ and the model $f_j(x)$ produces values of $\{-1,1\}$. The final prediction is obtained by first predicting using all M trees, then weighting each prediction $$f(x) = \frac{1}{M} \sum_{j=1}^{M} \beta_j f_j(x)$$ where f_i is the j^{th} tree fit and β_j is the stage weight for that tree. The final class is determined by the sign of the model prediction. **In English**: the final prediction is a weighted average of each tree's prediction. The weights are based on quality of each tree. ## Advances in Boosting Although originally developed in the computer science literature, statistical views on boosting made substantive improvements to the model. #### For example: - different loss functions could be used, such as squared-error loss, binomial likelihood etc - the rate at which the boosted tree adapts to new model fits could be controlled and tweaked - sub-sampling the training set within each boosting iteration could be used to increase model performance The most well known statistical boosting model is the *stochastic gradient* boosting of Friedman (2002). However, there are numerous approaches to boosting. Many use non-tree models as the *base learner*. ## Boosting Packages in R Boosting functions for *trees* in R: - gbm in the gbm package - ada in ada - blackboost in mboost - C50 in C50 There are also packages for boosting other models (e.g. the mboost package) The CRAN Machine Learning Task View has a more complete list: http://cran.r-project.org/web/views/MachineLearning.html ## Boosting via C5.0 C5.0 is an evolution of the C4.5 of Quinlan (1993). Compared to CART, some of the differences are: - A different impurity measure is used (entropy) - Tree pruning is done using *pessimistic pruning* - Splits on categorical predictors are handled very differently While the stochastic gradient boosting machines diverged from the original adaboost algorithm, C5.0 does something similar to adaboost. After the first tree is created, weights are determined and subsequent iterations create weighted trees of about the same size as the first. The final prediction is a simple average (i.e. no stage weights). # C5.0 Weighting Scheme ## C5.0 Syntax This function has pretty standard syntax: ``` > C50(x = predictors, y = factorOutcome) ``` #### There are a few arguments: - trials: the number of boosting iterations - rules: a logical to indicate whether the tree(s) should be collapsed into rules. - winnow: a logical that enacts a feature selection step prior to model building. - costs: a matrix that places unbalanced costs of different types of errors. #### The prediction code is fairly standard ``` > predict(object, trials, type) > ## type is "class" or "prob" > ## trials can be <= the original argument</pre> ``` ## Tuning the C5.0 Model Let's use the basic tree model (i.e. no rules) with no additional feature selection. We will tune the model over the number of boosting iterations $(1 \dots 100)$ Note that we do no have to fit 100 models for each iteration of resampling. We fit the 100 iteration model and derive the other 99 predictions using just the predict method. We call this the "sub-model" trick. train uses it whenever possible (including blackboost, C5.0, cubist, earth, enet, gamboost, gbm, glmboost, glmnet, lars, lasso, logitBoost, pam, pcr, pls, rpart and others) #### Tuning the C5.0 Model train was designed to make the syntax changes between models minimal. Here, we will specify exactly what values the model should tune over. A data frame is used with one row per tuning variable combination. #### Model Output #### > c5Tune ``` C5.0 1009 samples 58 predictors 2 classes: 'PS', 'WS' No pre-processing Resampling: Cross-Validated (10 fold, repeated 5 times) Summary of sample sizes: 909, 907, 908, 908, 908, 909, ... Resampling results across tuning parameters: Spec ROC SD Sens SD Spec SD trials ROC Sens 0.8 0.8 0.7 0.04 0.05 0.08 1 0.8 0.9 0.7 0.04 0.05 0.07 : 0.9 0.9 0.8 0.04 0.07 100 0.03 0.9 0.9 0.8 0.03 0.04 100 0.07 0.9 0.9 100 0.8 0.03 0.04 0.07 0.9 0.9 100 0.8 0.03 0.04 0.07 100 0.9 0.9 0.8 0.03 0.04 0.07 ``` Tuning parameter 'model' was held constant at a value of tree Tuning parameter 'winnow' was held constant at a value of FALSE ROC was used to select the optimal model using the largest value. The final values used for the model were trials = 96, model = tree and winnow = FALSE. ## Boosted Tree Resampling Profile ggplot(c5Tune) #### Test Set Results ``` > c5Pred <- predict(c5Tune, testing)</pre> > confusionMatrix(c5Pred, testing$Class) Confusion Matrix and Statistics Reference Prediction PS WS PS 562 83 WS 102 263 Accuracy: 0.817 95% CI: (0.792, 0.84) No Information Rate: 0.657 P-Value [Acc > NIR] : <2e-16 Kappa: 0.599 Mcnemar's Test P-Value: 0.186 Sensitivity: 0.846 Specificity: 0.760 Pos Pred Value: 0.871 Neg Pred Value: 0.721 Prevalence: 0.657 Detection Rate: 0.556 Detection Prevalence: 0.639 Balanced Accuracy: 0.803 'Positive' Class: PS ``` #### Test Set ROC Curve #### Test Set ROC Curve ``` > c5R.0C Call: roc.default(response = testing$Class, predictor = c5Probs$PS, levels = rev(levels(testing$Class))) Data: c5Probs$PS in 346 controls (testing$Class WS) < 664 cases (testing$Class PS). Area under the curve: 0.891 > plot(rpartROC, type = "S") > plot(c5ROC, add = TRUE, col = "#9E0142") ``` ## Test Set ROC Curves #### Test Set Probabilities histogram(~c5Probs\$PS|testing\$Class, xlab = "Probability of Poor Segmentation") # Support Vector Machines (SVM) This is a class of powerful and very flexible models. SVMs for classification use a completely different objective function called the **margin**. Suppose a hypothetical situation: a dataset of two predictors and we are trying to predict the correct class (two possible classes). Let's further suppose that these two predictors completely separate the classes # Support Vector Machines # Support Vector Machines (SVM) There are an infinite number of straight lines that we can use to separate these two groups. Some must be better than others... The margin is a defined by equally spaced boundaries on each side of the line. To maximize the margin, we try to make it as large as possible without capturing any samples. As the margin increases, the solution becomes more robust. SVMs determine the slope and intercept of the line which maximizes the margin. # Maximizing the Margin #### **SVM** Prediction Function Suppose our two classes are coded as -1 or 1. The SVM model estimates n parameters $(\alpha_1 \dots \alpha_n)$ for the model. Regularization is used to avoid saturated models (more on that in a minute). For a new point u, the model predicts: $$f(u) = \beta_0 + \sum_{i=1}^n \alpha_i y_i x_i' u$$ The decision rule would predict class #1 if f(u) > 0 and class #2 otherwise. Data points that are support vectors have $\alpha_i \neq 0$, so the prediction equation is only affected by the support vectors. # Support Vector Machines (SVM) When the classes overlap, points are allowed within the margin. The number of points is controlled by a cost parameter. The points that are within the margin (or on it's boundary) are the support vectors Consequences of the fact that the prediction function only uses the support vectors: - the prediction equation is more compact and efficient - the model may be more robust to outliers #### The Kernel Trick You may have noticed that the prediction function was a function of an inner product between two samples vectors $(x'_i u)$. It turns out that this opens up some new possibilities. Nonlinear class boundaries can be computed using the "kernel trick". The predictor space can be expanded by adding nonlinear functions in x. These functions, which must satisfy specific mathematical criteria, include common functions: Polynomial : $$K(x, u) = (1 + x'u)^p$$ Radial basis function : $$K(x, u) = exp \left[\frac{-\sigma}{2} (x - u)^2 \right]$$ We don't need to store the extra dimensions; these functions can be computed quickly. ## **SVM** Regularization As previously discussed, SVMs also include a regularization parameter that controls how much the regression line can adapt to the data smaller values result in more linear (i.e. flat) surfaces This parameter is generally referred to as "Cost" If the cost parameter is large, there is a significant penalty for having samples within the margin \Rightarrow the boundary becomes very
flexible. Tuning the cost parameter, as well as any kernel parameters, becomes very important as these models have the ability to greatly over—fit the training data. (animation) #### SVM Models in R There are several packages that include SVM models: - e1071 has the function svm for classification (2+ classes) and regression with 4 kernel functions - klaR has symlight which is an interface to the C library of the same name. It can do classification and regression with 4 kernel functions (or user defined functions) - sympath has an efficient function for computing 2-class models (including 2 kernel functions) - kernlab contains ksvm for classification and regression with 9 built—in kernel functions. Additional kernel function classes can be written. Also, ksvm can be used for text mining with the tm package. Personally, I prefer kernlab because it is the most general and contains other kernel method functions (e1071 is probably the most popular). ## Tuning SVM Models We need to come up with reasonable choices for the cost parameter and any other parameters associated with the kernel, such as - polynomial degree for the polynomial kernel - \bullet σ , the scale parameter for radial basis functions (RBF) We'll focus on RBF kernel models here, so we have two tuning parameters. However, there is a potential shortcut for RBF kernels. Reasonable values of σ can be derived from elements of the kernel matrix of the training set. The manual for the sigest function in kernlab has "The estimation [for σ] is based upon the 0.1 and 0.9 quantile of $|x - x'|^2$." Anecdotally, we have found that the mid-point between these two numbers can provide a good estimate for this tuning parameter. This leaves only the cost function for tuning. ## **SVM** Example We can tune the SVM model over the cost parameter. ## **SVM** Example > svmTune Support Vector Machines with Radial Basis Function Kernel 1009 samples 58 predictors 2 classes: 'PS', 'WS' Pre-processing: centered, scaled Resampling: Cross-Validated (10 fold, repeated 5 times) Summary of sample sizes: 909, 907, 908, 908, 908, 909, ... Resampling results across tuning parameters: C ROC Sens Spec ROC SD Sens SD Spec SD 0.2 0.9 0.9 0.03 0.05 0.08 0.7 0.5 0.9 0.9 0.03 0.08 0.7 0.04 0.9 0.9 0.7 0.03 0.04 0.07 0.04 0.07 0.9 0.9 0.7 0.03 0.7 0.03 0.04 0.07 0.9 0.9 0.9 0.9 0.03 0.04 0.07 0.7 0.8 0.9 0.7 0.04 0.04 0.09 20 Tuning parameter 'sigma' was held constant at a value of 0.01466 ROC was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.01 and C = 1. 0.05 0.04 0.09 0.1 0.6 0.6 0.04 0.04 0.8 0.9 0.8 0.8 30 60 ## **SVM** Example ``` > svmTune$finalModel Support Vector Machine object of class "ksvm" SV type: C-svc (classification) parameter : cost C = 1 Gaussian Radial Basis kernel function. Hyperparameter : sigma = 0.0146629801604564 Number of Support Vectors: 545 Objective Function Value: -395.9 Training error: 0.125867 Probability model included. ``` 545 training data points (out of 1009 samples) were used as support vectors. ### **SVM ROC Profile** ``` plot(svmTune, metric = "ROC", scales = list(x = list(log = 2))) ``` ### Test Set Results ``` > svmPred <- predict(svmTune, testing[, names(testing) != "Class"])</pre> > confusionMatrix(svmPred, testing$Class) Confusion Matrix and Statistics Reference Prediction PS WS PS 574 96 WS 90 250 Accuracy: 0.816 95% CI: (0.791, 0.839) No Information Rate: 0.657 P-Value [Acc > NIR] : <2e-16 Kappa : 0.589 Mcnemar's Test P-Value: 0.714 Sensitivity: 0.864 Specificity: 0.723 Pos Pred Value: 0.857 Neg Pred Value: 0.735 Prevalence: 0.657 Detection Rate: 0.568 Detection Prevalence: 0.663 Balanced Accuracy: 0.794 'Positive' Class: PS ``` ## Test Set ROC Curves # Comparing Models ## Comparing Models Using Resampling Notice that, before each call to train, we set the random number seed. That has the effect of using the same resamping data sets for the boosted tree and support vector machine. Effectively, we have *paired* estimates for performance. Hothorn et al (2005) and Eugster et al (2008) demonstrate techniques for making inferential comparisons using resampling. #### A Few Other Models ``` > set.seed(1) > fdaTune <- train(Class ~ ., data = training,</pre> method = "fda", tuneLength = 12, metric = "ROC". trControl = cvCtrl) + Loading required package: mda Loading required package: class Loaded mda 0.4-4 > > set.seed(1) > plrTune <- train(Class ~ ., data = training, method = "multinom", preProc = c("center", "scale"), + tuneGrid = data.frame(decay = c(0.1, 1, 10, 20, 40)), trace = FALSE, maxit = 1000, metric = "ROC", trControl = cvCtrl) ``` ## Collecting Results With resamples caret has a function and classes for collating resampling results from objects of class train, rfe and sbf. ``` > cvValues <- resamples(list(CART = rpartTune, SVM = svmTune, + C5.0 = c5Tune, FDA = fdaTune, + logistic = plrTune))</pre> ``` ## Collecting Results With resamples > summary(cvValues) ``` Call: summary.resamples(object = cvValues) Models: CART, SVM, C5.0, FDA, logistic Number of resamples: 50 ROC Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.827 0.852 0.852 CART 0.726 0.882 0.920 0.887 0.886 0.910 0.936 SVM 0.776 0.869 0 C5.0 0.924 0.949 0.814 0.885 0.897 0.900 FDA 0.872 0.891 0.891 0.803 0.915 0.944 logistic 0.775 0.865 0.883 0.880 0.899 0.929 Sens Min. 1st Qu. Median Mean 3rd Qu. Max. NA's CART 0.812 0.850 0.843 0.734 0.875 0.922 SVM 0.794 0.841 0.873 0.869 0.901 0.952 0 0.841 0.859 0.862 C5.0 0.762 0.889 0.938 0.841 0.859 0.862 0.889 0.937 FDA 0.746 0.816 0.844 0.846 logistic 0.750 0.875 0.953 Spec Min. 1st Qu. Median Mean 3rd Qu. Max. NA's CART 0.676 0.720 0.712 0.757 0.838 0.568 0.678 0.730 0.724 SVM 0.568 0.779 0.865 0 C5.0 0.595 0.730 0.763 0.767 0.811 0.946 0 FDA 0.632 0.678 0.730 0.734 0.784 0.865 0 logistic 0.541 0.676 0.720 0.723 0.784 0.919 ``` ## Visualizing the Resamples There are a number of lattice plot methods to display the results: bwplot, dotplot, parallelplot, xyplot, splom. For example: ``` > splom(cvValues, metric = "ROC", pscales = 0) ``` ## Visualizing the Resamples ## Visualizing the Resamples dotplot(cvValues, metric = "ROC") ## Comparing Models We can also test to see if there are differences between the models: ``` > rocDiffs <- diff(cvValues, metric = "ROC")</pre> > summary(rocDiffs) Call: summary.diff.resamples(object = rocDiffs) p-value adjustment: bonferroni Upper diagonal: estimates of the difference Lower diagonal: p-value for HO: difference = 0 ROC CART logistic SVM C5.0 FDA CART -0.03397 -0.04817 -0.03882 -0.02812 1.09e-08 -0.01420 -0.00485 0.00585 SVM C5.0 1.25e-13 3.14e-05 0.00934 0.02005 FDA 6.13e-10 0.70137 0.01969 0.01070 logistic 4.76e-07 0.07764 1.19e-06 0.00225 ``` There are lattice plot methods, such as dotplot. ## Visualizing the Differences dotplot(rocDiffs, metric = "ROC") ## Clustering the Models The models can be clustered and used in a PCA too. ``` plot(caret:::cluster.resamples(cvValues)) ``` ## Parallel Processing Since we are fitting a lot of independent models over different tuning parameters and sampled data sets, there is no reason to do these sequentially. R has many facilities for splitting computations up onto multiple cores or machines See Schmidberger et al (2009) for a recent review of these methods ### foreach and caret To loop through the models and data sets, caret uses the foreach package, which parallelizes for loops. foreach has a number of *parallel backends* which allow various technologies to be used in conjunction with the package. On CRAN, these are the doSomething packages, such as doMC, doMPI, doSMP and others. For example, doMC uses the multicore package, which forks processes to split computations (for unix and OS X only for now). ### foreach and caret To use parallel processing in caret, no changes are needed when calling train. The parallel technology must be *registered* with **foreach** prior to calling train. #### For multicore ``` > library(doMC) ``` > registerDoMC(cores = 2) Note that, when using parallel processing with train, rfe or sbf, the underlying model function (e.g. avNNet) may also use parallel processing too and you end up with $workers^2$. train, rfe and sbf have options called allowParallel that let's you choose where the parallelism occurs (or should not). ## Training Times and Speedups HPC job scheduling data from Kuhn and Johnson (2013) and the multicore package: ### References Breiman L, Friedman J, Olshen R, Stone C (1984). *Classification and Regression Trees*. Chapman and Hall, New York. Breiman, L (2001). "Statistical modeling: The two cultures." *Statistical Science*. 16(3), 199-231. Eugster M, Hothorn T, Leisch F (2008). "Exploratory and Inferential Analysis of Benchmark Experiments." *Ludwigs-Maximilians-Universitat Munchen, Department of Statistics*, Tech. Rep, 30. Friedman J (2002). "Stochastic Gradient Boosting." *Computational Statistics and Data Analysis*, 38(4), 367-378. Hastie T, Tibshirani R, Friedman J (2008). *The Elements of Statistical Learning: Data Mining, Inference and Prediction*. Springer ### References Hill A, LaPan P, Li Y, Haney S (2007). "Impact of Image Segmentation on High-Content Screening Data Quality for SK-BR-3 Cells." BMC Bioinformatics, 8(1), 340. Hothorn T, Leisch F, Zeileis A, Hornik K (2005). "The Design and Analysis of Benchmark Experiments." *Journal of Computational and Graphical Statistics*, 14(3), 675-699. Kuhn M, Johnson K (2013). Applied Predictive Modeling. Springer Quinlan R (1993). *C4.5: Programs for Machine Learning*. Morgan Kaufmann Publishers. Schmidberger M *et al* (2009). "State-of-the-art in Parallel Computing with R." *Journal of Statistical Software* 47.1. Shmueli, G. (2010). "To explain or to predict?." *Statistical Science*, 25(3), 289-310. ### Versions - R Under development (unstable) (2014-06-02 r65832), x86_64-apple-darwin10.8.0 - Locale:
en_US.US-ASCII/en_US.US-AS - Base packages: base, datasets, graphics, grDevices, grid, methods, parallel, splines, stats, utils - Other packages: AppliedPredictiveModeling 1.1-5, C50 0.1.0-19, caret 6.0-30, class 7.3-10, ctv 0.7-9, doMC 1.3.3, e1071 1.6-3, earth 3.2-7, foreach 1.4.2, Formula 1.1-1, ggplot2 0.9.3.1, Hmisc 3.14-4, iterators 1.0.7, kernlab 0.9-19, knitr 1.5, lattice 0.20-29, mda 0.4-4, mlbench 2.1-1, nnet 7.3-8, partykit 0.8-0, plotmo 1.3-3, plotrix 3.5-7, plyr 1.8.1, pROC 1.7.2, reshape2 1.4, rpart 4.1-8, survival 2.37-7, svmpath 0.953 - Loaded via a namespace (and not attached): BradleyTerry2 1.0-5, brglm 0.5-9, car 2.0-19, cluster 1.15.2, codetools 0.2-8, colorspace 1.2-4, compiler 3.2.0, CORElearn 0.9.43, dichromat 2.0-0, digest 0.6.4, evaluate 0.5.1, formatR 0.10, gtable 0.1.2, gtools 3.4.1, highr 0.3, labeling 0.2, latticeExtra 0.6-26, lme4 1.1-6, MASS 7.3-33, Matrix 1.1-3, minqa 1.2.3, munsell 0.4.2, nlme 3.1-117, proto 0.3-10, RColorBrewer 1.0-5, Rcpp 0.11.1, RcppEigen 0.3.2.1.2, scales 0.2.3, stringr 0.6.2, tools 3.2.0