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Preface

This tutorial is an introduction to analysing spatial data in R, specifically through map-making with R’s
‘base’ graphics and use of the popular graphics package ggplot2. It teaches the basics of using R as a fast,
user-friendly and extremely powerful command-line Geographic Information System (GIS).

The tutorial is practical in nature: you will load-in, visualise and manipulate spatial data. We assume no
prior knowledge of spatial data analysis but some experience with R will help. If you have not used R before,
it may be worth following an introductory tutorial, such as “A (very) short introduction to R” (Torfs and
Brauer, 2012). This is how the tutorial is organised.

1. Introduction: provides a guide to R’s syntax and preparing for the tutorial
2. Spatial data in R: describes basic spatial functions in R
3. Creating and manipulating spatial data: includes changing projection, clipping and spatial joins
4. Map making with ggplot2: a graphics package for producing beautiful maps quickly
5. Taking spatial analysis in R further: a compilation of resources for furthering your skills

Part I: Introduction

Prerequisites and packages

For this tutorial you need a copy of R. The latest version can be downloaded from http://cran.r-project.org/.

We also suggest that you use an R editor, such as RStudio, as this will improve the user-experience and help
with the learning process. This can be downloaded from http://www.rstudio.com.

R has a huge and growing number of spatial data packages. We recommend taking a quick browse on R’s
main website to see the spatial packages available: http://cran.r-project.org/web/views/Spatial.html.

In this tutorial we will use:

• ggmap: extends the plotting package ggplot2 for maps
• rgdal: R’s interface to the popular C/C++ spatial data processing library gdal
• rgeos: R’s interface to the powerful vector processing library geos
• maptools: provides various mapping functions
• dplyr and tidyr: fast and concise data manipulation packages
• tmap: a new packages for rapidly creating beautiful maps

To test whether a package is installed, try to load it using library. For example, to test if ggplot2 is
available, enter library(ggplot2). If there is no output from R, this is good news: it means that the library
has already been installed on your computer.

If you get an error message, it needs to be installed using install.packages("ggplot2"). The package will
download from CRAN (the Comprehensive R Archive Network); if you are prompted to select a ‘mirror’,
select one that is close to your home. If you have not done so already, install these packages on your computer
now. A quick way to do this in one go is to enter the following lines of code:

x <- c("ggmap", "rgdal", "rgeos", "maptools", "dplyr", "tidyr", "tmap")
install.packages(x) # warning: this may take a number of minutes
lapply(x, library, character.only = TRUE) # load the required packages
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Typographic conventions and getting help

It is a good idea to get into the habit of consistent and clear writing in any language, and R is no exception.
Adding comments to your code is good practice, so you remember at a later date what you’ve done, aiding
the learning process. There are two main ways of commenting code using the # symbol: above a line of code
or directly following it, as illustrated in the block of code presented below, which should create Figure 1 if
typed correctly into the R command line.

Figure 1: Basic plot of x and y (right) and code used to generate the plot (right).

In the first line of code a new object called x is created. Any name could have been used, like x_bumkin, but
x is concise and works just fine here. It is good practice to give your objects meaningful names. Note <-, the
directional “arrow” assignment symbol. This creates new objects. We will be using this symbol a lot in this
tutorial.1

To distinguish between prose and code, please be aware of the following typographic conventions used in this
document: R code (e.g. plot(x, y)) is written in a monospace font and package names (e.g. rgdal) are
written in bold.

A double hash (##) at the start of a line of code indicates that this is output from R. Lengthy outputs have
been omitted from the document to save space, so do not be alarmed if R produces additional messages: you
can always look up them up on-line.

As with any programming language, there are often many ways to produce the same output in R. The code
presented in this document is not the only way to do things. We encourage you to play with the code to
gain a deeper understanding of R. Do not worry, you cannot ‘break’ anything using R and all the input data
can be re-loaded if things do go wrong. As with learning to skateboard, you learn by falling and getting an
Error: message in R is much less painful than falling onto concrete! We encourage Error:s — it means you
are trying new things.

If you require help on any function, use the help command, e.g. help(plot). Because R users love being
concise, this can also be written as ?plot. Feel free to use it at any point you would like more detail on a
specific function (although R’s help files are famously cryptic for the un-initiated). Help on more general
terms can be found using the ?? symbol. To test this, try typing ??regression. For the most part, learning
by doing is a good motto, so let’s crack on and download some packages and data.

1Tip: typing Alt - on the keyboard will create the arrow in RStudio. The equals sign = also works but is rarely used.
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Part II: Spatial data in R

Starting the tutorial and downloading the data

Now that we have taken a look at R’s syntax and installed the necessary packages, we can start looking at
some real spatial data. This second part introduces some spatial files that we will download from the internet.
Plotting and interrogating spatial objects are central spatial data analysis in R, so we will focus on these
elements in the next two parts of the tutorial, before focussing on creating attractive maps in Part IV.

Download the data for this tutorial from https://github.com/Robinlovelace/Creating-maps-in-R. Click on
the “Download ZIP” button on the right hand side of the screen and once it is downloaded, unzip this to a
new folder on your computer.

For this tutorial, we suggest working on the ‘Creating-maps-in-R’ project which has already been created
for you. To open this project, navigate to File -> Open File... in the top menu and navigate to the
unzipped Creating-maps-in-R folder. Double click on the Creating-maps-in-R.Rproj project file to open
this project.

Alternatively, you can use the project menu to open the project or create a new one. It is highly recommended
that you use RStudio’s projects to organise your R work and that you organise your files into sub-folders (e.g.
code, input-data, figures) to avoid digital clutter (Figure 2). The RStudio website contains an overview
of the software: rstudio.com/products/rstudio/.

Figure 2: The RStudio environment with the project tab poised to open the Creating-maps-in-R project.

Opening a project sets the current working directory to the project’s parent folder, the Creating-maps-in-R
folder in this case. If you ever need to change your working directory, you can use the ‘Session’ menu at the
top of the page or use the setwd command.

It is worth taking a look at the input dataset in your file browser before opening them in R. You could also
try opening the file “london_sport.shp”(located within the “data” folder of the project), in mapping software
such as QGIS, which can be freely downloaded from the internet. Note that .shp files are composed of several
files for each object such as .prj, .sbn and .dbf files; you should be able to open “london_sport.dbf” in a
spreadsheet program such as LibreOffice Calc. Once you think you understand the input data, it’s time to
open it in R.

One of the most important steps in handling spatial data with R is the ability to read in spatial data, such as
shapefiles (a common geographical file format). There are a number of ways to do this, the most commonly
used and versatile of which is readOGR. This function, from the rgdal package, automatically extracts the
information regarding the data.

rgdal is R’s interface to the “Geospatial Abstraction Library (GDAL)” which is used by other open source
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GIS packages such as QGIS and enables R to handle a broader range of spatial data formats. If you’ve not
already installed and loaded the rgdal package (see the ‘prerequisites and packages’ section) do so now:

library(rgdal)
lnd <- readOGR(dsn = "data", layer = "london_sport")

In the second line of code above the readOGR function is used to load a shapefile and assign it to a new object
called “lnd”. readOGR is a function which accepts two arguments: dsn which stands for “data source name”
and specifies the location where the file is stored, and layer which specifies the file name. Note that each
new argument is separated by a comma and there is no need to specify the file extension (e.g. .shp) when
providing the file name. Both arguments in this case are character strings (indicated by quote marks like this
one ").

R functions have a default order for arguments, so dsn = and layer = do not actually have to be typed for
the command to run, for example, readOGR("data", "london_sport") would work just as well. For clarity,
it is good practice to include argument names such as dsn and layer when learning new functions and we
continue this tradition below.

The files beginning london_sport in the data/ directory contain the population of London Boroughs in 2001
and the percentage of the population participating in sporting activities. This data originates from the Active
People Survey. The boundary data is from the Ordnance Survey.

For information about how to load different types of spatial data, see the help documentation for readOGR.
This can be accessed by typing ?readOGR. For another worked example, in which a GPS trace is loaded,
please see Cheshire and Lovelace (2014).

The structure of spatial data in R

We have now created a new spatial object called lnd from the “london_sport” shapefile. Spatial objects are
made up of a number of different slots, the key ones being @data and @polygons (or @lines for line data)
geometry data. The data slot can be thought of as an attribute table and the geometry slot is where the
vertices of the object lie in space. Let’s now analyse the sport object with some basic commands:

head(lnd@data, n = 2)

## ons_label name Partic_Per Pop_2001
## 0 00AF Bromley 21.7 295535
## 1 00BD Richmond upon Thames 26.6 172330

mean(lnd$Partic_Per)

## [1] 20.05455

Take a look at this output and notice the table format of the data and the column names. There are two
important symbols at work in the above block of code: the @ symbol in the first line of code is used to refer
to the attribute slot of the object. The $ symbol refers to a specific attribute (a variable with a column
name) in the data slot, which was identified from the result of running the first line of code. If you are using
RStudio, test out the auto-completion functionality by hitting tab before completing the command — this
can save you a lot of time in the long run (see Figure 3).

To display the raw coordinates of the first polygon, for example, we must select a slot within a slot within
a slot. The following code, for example, selects the first polygon of lnd and then selects the first Polygon
within this spatial unit (there is usually only one) and then returns the coordinates of this. Note the plot in
Figure 4 has an incorrect projection.
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Figure 3: Tab-autocompletion in action: display from RStudio after typing lnd@ then tab to see which slots
are in lnd

head(lnd@polygons[[1]]@Polygons[[1]]@coords, 3)

## [,1] [,2]
## [1,] 541177.7 173555.7
## [2,] 541872.2 173305.8
## [3,] 543441.5 171429.9

plot(lnd@polygons[[1]]@Polygons[[1]]@coords)
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Figure 4: Raw coordinate data displayed and plotted in R.

The head function in the first line of the code above simply means “show the first few lines of data”, i.e. the
head. It’s default is to output the first 6 rows of the dataset (try simply head(lnd@data)), but we can specify
the number of lines with n = 2 after the comma. The second line of the code above calculates the mean
value of the variable Partic_Per (sports participation per 100 people) for each of the zones in the lnd object.
To explore lnd object further, try typing nrow(lnd) and record how many zones the dataset contains. You
can also try ncol(lnd).

Basic plotting

Now we have seen something of the structure of spatial objects in R, let us look at plotting them. Note, that
plots use the geometry data, contained primarily in the @polygons slot in the above example, to draw the
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shape of the zones. The information in @data will typically be used to colour in the map. which describes
where the polygons are located in space:

plot(lnd) # not shown in tutorial - try it on your computer

plot is one of the most useful functions in R, as it changes its behaviour depending on the input data (this is
called polymorphism by computer scientists). Inputting another object such as plot(lnd@data) will generate
an entirely different type of plot. Thus R is intelligent at guessing what you want to do with the data you
provide it with.
R has powerful subsetting capabilities that can be accessed very concisely using square brackets, as shown in
the following example:

# select rows of lnd@data where sports participation is less than 15
lnd@data[lnd$Partic_Per < 15, ]

## ons_label name Partic_Per Pop_2001
## 17 00AQ Harrow 14.8 206822
## 21 00BB Newham 13.1 243884
## 32 00AA City of London 9.1 7181

The above line of code asked R to select rows from the lnd object, where sports participation is lower than
15, in this case rows 17, 21 and 32, which are Harrow, Newham and the city centre respectively. The square
brackets work as follows: anything before the comma refers to the rows that will be selected, anything after
the comma refers to the number of columns that should be returned. For example if the data frame had
1000 columns and you were only interested in the first two columns you could specify 1:2 after the comma.
The “:” symbol simply means “to”, i.e. columns 1 to 2. Try experimenting with the square brackets notation
(e.g. guess the result of lnd@data[1:2, 1:3] and test it): it will be useful.
So far we have been interrogating only the attribute slot (@data) of the lnd object, but the square brackets
can also be used to subset spatial objects, i.e. the geometry slot. Using the same logic as before try to plot a
subset of zones with high sports participation.

# Select zones where sports participation is between 20 and 25%
sel <- lnd$Partic_Per > 20 & lnd$Partic_Per < 25
plot(lnd[sel, ]) # output not shown here
head(sel) # test output of previous selection (not shown)

This plot is could be useful, but it only shows the areas which meet the criteria. To see the sporty areas in
context with the other areas of the map simply use the add = TRUE argument after the initial plot. (add =
T would also work, but we like to spell things out in this tutorial for clarity). What do you think the col
argument refers to in the below block? (see Figure 5).
If you wish to experiment with multiple criteria queries, use &.

plot(lnd, col = "lightgrey") # plot the london_sport object
sel <- lnd$Partic_Per > 25
plot(lnd[ sel, ], col = "turquoise", add = TRUE) # add selected zones to map

Congratulations! You have just interrogated and visualised a spatial object: where are areas with high levels
of sports participation in London? The map tells us. Do not worry for now about the intricacies of how this
was achieved: you have learned vital basics of how R works as a language; we will cover this in more detail in
subsequent sections.
As a bonus stage, select and plot only zones that are close to the centre of London (see Fig. 6). Programming
encourages rigorous thinking and it helps to define the problem more specifically:
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Figure 5: Simple plot of London with areas of high sports participation highlighted in blue

Challenge: Select all zones whose geographic centroid lies within 10 km of the geographic
centroid of inner London.2

Central
London

Figure 6: Zones in London whose centroid lie within 10 km of the geographic centroid of inner London

Attribute data

All shapefiles have both attribute table and geometry data. These are automatically loaded with readOGR.
The loaded attribute data can be treated the same as an R data frame.

R deliberately hides the geometry of spatial data unless you print the entire object (try typing print(lnd)).
Let’s take a look at the headings of sport, using the following command: names(lnd) Remember, the attribute
data contained in spatial objects are kept in a ‘slot’ that can be accessed using the @ symbol: lnd@data. This
is useful if you do not wish to work with the spatial components of the data at all times.

Type summary(lnd) to get some additional information about the data object. Spatial objects in R contain
much additional information:

summary(lnd)

## Object of class SpatialPolygonsDataFrame
## Coordinates:
## min max

2To see how this map was created, see the code in intro-spatial.Rmd. This may be loaded by typing
file.edit("intro-spatial.Rmd") or online at github.com/Robinlovelace/Creating-maps-in-R/blob/master/intro-spatial.Rmd.
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## x 503571.2 561941.1
## y 155850.8 200932.5
## Is projected: TRUE
## proj4string :
## [+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 ....]

...

The first line of the above output tells us that lnd is a special spatial class, in this case a
SpatialPolygonsDataFrame. This means it is composed of various polygons, each of which has at-
tributes. (Summaries of the attribute data are also provided, but are not printed above.) This is the ideal
class of data to represent administrative zones. The coordinates tell us what the maximum and minimum x
and y values are (for plotting). Finally, we are told something of the coordinate reference system with the Is
projected and proj4string lines. In this case, we have a projected system, which means it is a Cartesian
reference system, relative to some point on the surface of the Earth. We will cover reprojecting data in the
next part of the tutorial.
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Part III: Creating and manipulating spatial data

Beyond visualisation and interogation GIS software must also be able to create and modify spatial data.
R excels in this regard. R’s spatial packages provide a very wide and powerful suite of functionality for
processing spatial data, and its strict class system make it easy to create new spatial datasets.

Reprojecting and joining/clipping are fundamental operations in the GIS analyst’s toolkit, so we introduce
these, before looking at joining non-spatial data to spatial objects. Finally we cover spatial joins, whereby
information from two spatial objects is combined based on spatial location.

Creating new spatial data

R objects can be created by entering the name of the class we want to make. vector and data.frame objects
for example, can be created as follows:

vec <- vector(mode = "numeric", length = 3)
df <- data.frame(x = 1:3, y = c(1/2, 2/3, 3/4))

We can check the class of these new objects using class():

class(vec)

## [1] "numeric"

class(df)

## [1] "data.frame"

The same logic applies to spatial data, but the input requirements are stricter. To create a SpatialPoints
object, for example, the input coordinates must be supplied in a matrix:

mat <- as.matrix(df) # create matrix object with as.matrix
sp1 <- SpatialPoints(coords = mat)

Note in the code above the use of as.matrix() to change the class of an existing object. We then create a
spatial points object, one of the fundamental data types for spatial data. (The others are lines, polygons
and pixels, which can be created by SpatialLines, SpatialPolygons and SpatialPixels, respectively.)
Each type of spatial data has a corrolary that can accepts non-spatial data, created by adding DataFrame.
SpatialPointsDataFrame(), for example, creates points with an associated data.frame. The number of
rows in this dataset must equal the number of features in the spatial object, which in the case of sp1 is 3.

class(sp1)

## [1] "SpatialPoints"
## attr(,"package")
## [1] "sp"

spdf <- SpatialPointsDataFrame(sp1, data = df)
class(spdf)
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## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"

The above code extends the preexisting object sp1 by adding data from df. To see how strinct spatial classes
are, try replacing df with mat in the above code: it causes an error. All spatial data classes can be created
in a similar way, although SpatialLines and SpatialPolygons are much more complicated (Bivand et al.
2013). More frequently your spatial data will be read-in from an externally-created file, e.g. using readOGR().
Unlike the spatial objects we created above, most spatial data comes with an associate ‘CRS’.

Projections: setting and transforming CRS in R

The Coordinate Reference System (CRS) of spatial objects defines where they are placed on the Earth’s
surface. You may have noticed ’proj4string ’in the summary of lnd above: the information that follows
represents its CRS. Spatial data should always have a CRS. If no CRS information is provided, and the
correct CRS is known, it can be set as follow:

proj4string(lnd) <- NA_character_ # remove CRS information from lnd
proj4string(lnd) <- CRS("+init=epsg:27700") # assign a new CRS

R issues a warning when the CRS is changed. This is so the user knows that they are simply changing the
CRS, not reprojecting the data. An easy way to refer to different projections is via EPSG codes.

Under this system 27700 represents the British National Grid. ‘WGS84’ (epsg:4326) is a very commonly
used CRS worldwide. The following code shows how to search the list of available EPSG codes and create a
new version of lnd in WGS84:3

EPSG <- make_EPSG() # create data frame of available EPSG codes
EPSG[grepl("WGS 84$", EPSG$note), ] # search for WGS 84 code

## code note prj4
## 249 4326 # WGS 84 +proj=longlat +datum=WGS84 +no_defs

lnd84 <- spTransform(lnd, CRS("+init=epsg:4326")) # reproject

Above, spTransform converts the coordinates of lnd into the widely used WGS84 CRS. Now we’ve transformed
lnd into a more widely used CRS, it is worth saving it. R stores data efficiently in .RData or .Rds formats.
The former is more restrictive and maintains the object’s name, so we use the latter.

# Save lnd84 object (we will use it in Part IV)
saveRDS(object = lnd84, file = "data/lnd84.Rds")

Now we can remove the lnd84 object with the rm command. It will be useful later. (In RStudio, notice it
also disappears from the Environment in the top right panel.)

rm(lnd84) # remove the lnd object
3Note: entering projInfo() provides additional CRS options. spatialreference.org provides more information about EPSG

codes.
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Attribute joins

Attribute joins are used to link additional pieces of information to our polygons. In the lnd object, for
example, we have 4 attribute variables — that can be found by typing names(lnd). But what happens when
we want to add more variables from an external source? We will use the example of recorded crimes by
London boroughs to demonstrate this.
To reaffirm our starting point, let’s re-load the “london_sport” shapefile as a new object and plot it:

library(rgdal) # ensure rgdal is loaded
# Create new object called "lnd" from "london_sport" shapefile
lnd <- readOGR(dsn = "data", "london_sport")
plot(lnd) # plot the lnd object (not shown)
nrow(lnd) # return the number of rows (not shown)

The non-spatial data we are going to join to the lnd object contains records of crimes in London. This is
stored in a comma separated values (.csv) file called “mps-recordedcrime-borough”. If you open the file in a
separate spreadsheet application first, we can see each row represents a single reported crime. We are going
to use a function called aggregate to aggregate the crimes at the borough level, ready to join to our spatial
lnd dataset. A new object called crime_data is created to store this data.

# Create and look at new crime_data object
crime_data <- read.csv("data/mps-recordedcrime-borough.csv",

stringsAsFactors = FALSE)

head(crime_data, 3) # display first 3 lines
head(crime_data$CrimeType) # information about crime type

# Extract "Theft & Handling" crimes and save
crime_theft <- crime_data[crime_data$CrimeType == "Theft & Handling", ]
head(crime_theft, 2) # take a look at the result (replace 2 with 10 to see more rows)

# Calculate the sum of the crime count for each district, save result
crime_ag <- aggregate(CrimeCount ~ Borough, FUN = sum, data = crime_theft)
# Show the first two rows of the aggregated crime data
head(crime_ag, 2)

You should not expect to understand all of this upon first try: simply typing the commands and thinking
briefly about the outputs is all that is needed at this stage. Here are a few things that you may not have seen
before that will likely be useful in the future:

• In the first line of code when we read in the file we specify its location (check in your file browser to be
sure).

• The == function is used to select only those observations that meet a specific condition i.e. where it is
equal to, in this case all crimes involving “Theft and Handling”.

• The ~ symbol means “by”: we aggregated the CrimeCount variable by the district name.

Now that we have crime data at the borough level, the challenge is to join it to the lnd object. We will base
our join on the Borough variable from the crime_ag object and the name variable from the lnd object. It is
not always straight-forward to join objects based on names as the names do not always match. Let’s see
which names in the crime_ag object match the spatial data object, lnd:

# Compare the name column in lnd to Borough column in crime_ag to see which rows match.
lnd$name %in% crime_ag$Borough
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## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

# Return rows which do not match
lnd$name[!lnd$name %in% crime_ag$Borough]

## [1] City of London
## 33 Levels: Barking and Dagenham Barnet Bexley Brent Bromley ... Westminster

The first line of code above uses the %in% command to identify which values in lnd$name are also contained
in the Borough names of the aggregated crime data. The results indicate that all but one of the borough
names matches. The second line of code tells us that it is ‘City of London’. This does not exist in the crime
data. This may be because the City of London has it’s own Police Force.4 (The borough name in the crime
data does not match lnd$name is ‘NULL’. Check this by typing crime_ag$Borough[!crime_ag$Borough
%in% lnd$name].)

Challenge: identify the number of crimes taking place in borough ‘NULL’, less than 4,000.

Having checked the data found that one borough does not match, we are now ready to join the spatial and
non-spatial datasets. It is recommended to use the left_join function from the dplyr package but the
merge function could equally be used. Note that when we ask for help for a function that is not loaded,
nothing happens, indicating we need to load it:

?left_join # error flagged
??left_join
library(dplyr) # load the powerful dplyr package (use plyr if unavailable)
?left_join # should now be loaded (use join if unavailable)

The above code demonstrates how to search for functions that are not currently loaded in R, using the ??
notation (short for help.search in the same way that ? is short for help). Note, you will need to have the
dplyr package, which provides fast and intuitive functions for processing data, installed for this to work.
After dplyr is loaded, a single question mark is sufficient to load the associated help.

The documentation for the left_join function will be displayed if the plyr package is available (if not,
use install.packages() to install it). We use left_join because we want the length of the data frame
to remain unchanged, with variables from new data appended in new columns. Or, in R’s rather terse
documentation: “return all rows from x, and all columns from x and y.” The *join commands (including
inner_join and anti_join) are more concise when joining variables have the same name across both datasets.
dplyr is also helpful here as it contains a useful function to rename variables:

head(lnd$name) # dataset to add to (results not shown)
head(crime_ag$Borough) # the variables to join
crime_ag <- rename(crime_ag, name = Borough) # rename the 'Borough' heading to 'name'
# head(left_join(lnd@data, crime_ag)) # test it works
lnd@data <- left_join(lnd@data, crime_ag)

## Joining by: "name"

## Warning in left_join_impl(x, y, by$x, by$y): joining character vector and
## factor, coercing into character vector

4See www.cityoflondon.police.uk/.
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Take a look at the new lnd@data object. You should see new variables added, meaning the attribute join
was successful. Congratulations! You can now plot the rate of theft crimes in London by borough (see Fig 8).

library(tmap) # load tmap package (see Section IV)
qtm(lnd, "CrimeCount") # plot the basic map

Figure 7: Number of thefts per borough.

Optional challenge: create a map of additional variables in London

With the attribute joining skills you have learned in this section, you should now be able to take datasets from
many sources and join them to your geographical data. To test your skills, try to join additional borough-level
variables to the lnd object. An excellent dataset on this can be found on the the data.london.gov.uk website.

Using this dataset and the methods developed above, Figure 8 was created: the proportion of council seats
won by the Conservatives in the 2014 local elections. The challenge is to create a similar map of a different
variable (you may need to skip to Part IV to plot continuous variables).5

Clipping and spatial joins

In addition to joining by attribute (e.g. Borough name), it is also possible to do spatial joins in R. There are
three main types: many-to-one, where the values of many intersecting objects contribute to a new variable
in the main table, one-to-many, or one-to-one. We will be conducting a many-to-one spatial join and using
transport infrastructure points such as tube stations and roundabouts as the spatial data to join, with the
aim of finding out about how many are found in each London borough.

library(rgdal)
# create new stations object using the "lnd-stns" shapefile.
stations <- readOGR(dsn = "data", layer = "lnd-stns")
proj4string(stations) # this is the full geographical detail.
proj4string(lnd) # what's the coordinate reference system (CRS)
bbox(stations) # the extent, 'bounding box' of stations
bbox(lnd) # return the bounding box of the lnd object

5To see how this map was created, see the code in intro-spatial.Rmd at github.com/Robinlovelace/Creating-maps-in-
R/blob/master/intro-spatial.Rmd.
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Figure 8: Proportion of council seats won by Conservatives in the 2014 local elections using data from
data.london.gov and joined using the methods presented in this section

The above code loads the data correctly, but also shows that there are problems with it: the Coordinate
Reference System (CRS) of stations differs from that of our lnd object. OSGB 1936 (or EPSG 27700) is
the official CRS for the UK, so we will convert the ‘stations’ object to this:

# Create reprojected stations object
stations27700 <- spTransform(stations, CRSobj = CRS(proj4string(lnd)))
stations <- stations27700 # overwrite the stations object
rm(stations27700) # remove the stations27700 object to clear up
plot(lnd) # plot London for context (see Figure 9)
points(stations) # overlay the station points

Figure 9: Sampling and plotting stations

Now we can clearly see that the stations points overlay the boroughs. The problem is that the spatial
extent of stations is great than that of lnd. We will create a spatially determined subset of the stations
object that fall inside greater London. This is clipping.
Two functions can be used to clip stations so that only those falling within London boroughs are retained:
sp::over, and rgeos::gIntersects (the word preceding the :: symbol refers to the package which the
function is from). Use ? followed by the function to get help on each. Whether gIntersects or over is
needed depends on the spatial data classes being compared (Bivand et al. 2013).
In this tutorial we will use the over function as it is easiest to use. In fact, it can be called just by using
square brackets:
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stations_backup <- stations # backup the stations object
stations <- stations_backup[lnd, ]
plot(stations) # test the clip succeeded (see Figure 10)

Figure 10: The clipped stations dataset

The above line of code says: “output all stations within the lnd object bounds”. This is an incredibly
concise way of clipping and has the added advantage of being consistent with R’s syntax for non-spatial
clipping. To prove it worked, only stations within the London boroughs appear in the plot.

gIntersects can achieve the same result, but with more lines of code (see www.rpubs.com/RobinLovelace
for more on this) . It may seem confusing that two different functions can be used to generate the same
result. However, this is a common issue in R; the question is finding the most appropriate solution.

In its less concise form (without use of square brackets), over takes two main input arguments: the target
layer (the layer to be altered) and the source layer by which the target layer is to be clipped. The output of
over is a data frame of the same dimensions as the original object (in this case stations), except that the
points which fall outside the zone of interest are set to a value of NA (“no answer”). We can use this to make
a subset of the original polygons, remembering the square bracket notation described in the first section. We
create a new object, sel (short for “selection”), containing the indices of all relevant polygons:

sel <- over(stations_backup, lnd)
stations2 <- stations_backup[!is.na(sel[,1]),]

Typing summary(sel) should provide insight into how this worked: it is a data frame with 1801 NA values,
representing zones outside of the London polygon. Note that the preceding two lines of code is equivalent to
the single line of code, stations <- stations[lnd, ]. The next section demonstrates spatial aggregation,
a more advanced version of spatial subsetting.

Spatial aggregation

As with R’s very terse code for spatial subsetting, the base function aggregate (which provides summaries
of variables based on some grouping variable) also behaves differently when the inputs are spatial objects.

stations_agg <- aggregate(x = stations["CODE"], by = lnd, FUN = length)
head(stations_agg@data)

## CODE
## 0 54
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## 1 22
## 2 43
## 3 18
## 4 12
## 5 12

The above code performs a number of steps in just one line:

• aggregate identifies which lnd polygon (borough) each station is located in and groups them
accordingly. The use of the syntax stations["CODE"] tells R that we are interested in the spatial data
from stations and its CODE variable (any variable could have been used here as we are merely counting
how many points exist).

• It counts the number of stations points in each borough, using the function length.
• A new spatial object is created, with the same geometry as lnd, and assigned the name stations_agg,

the count of stations.

It may seem confusing that the result of the aggregated function is a new shape, not a list of numbers — this
is because values are assigned to the elements within the lnd object. To extract the raw count data, one could
enter stations_agg$CODE. This variable could be added to the original lnd object as a new field, as follows:

lnd$n_points <- stations_agg$CODE

As shown below, the spatial implementation of aggregate can provide summary statistics of variables, as
well as simple counts. In this case we take the variable NUMBER and find its mean value for the stations in
each ward.6

lnd_n <- aggregate(stations["NUMBER"], by = lnd, FUN = mean)

For an optional advanced task, let us analyse and plot the result.

brks <- quantile(lnd_n$NUMBER)
labs <- grey.colors(n = 4)
q <- cut(lnd_n$NUMBER, brks, labels = labs,
include.lowest = T)

summary(q) # check what we've created

## #4C4C4C #969696 #C3C3C3 #E6E6E6
## 9 8 8 8

qc <- as.character(q) # convert to character class to plot
plot(lnd_n, col = qc) # plot (not shown in printed tutorial)
legend(legend = paste0("Q", 1:4), fill = levels(q), "topright")
areas <- sapply(lnd_n@polygons, function(x) x@area)

This results in a simple choropleth map and a new vector containing the area of each borough (the basis
for Fig. 11). As an additional step, try comparing the mean area of each borough with the mean value of
stations points within it: plot(lnd_n$NUMBER, areas).

Adding different symbols for tube stations and train stations
6See the miniature Vignette ‘Clipping and aggregating spatial data with gIntersects’ for more information on this: http:

//rpubs.com/RobinLovelace/83834 .
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Figure 11: Choropleth map of mean values of stations in each borough

Imagine now that we want to display all tube and train stations on top of the previously created choropleth
map. How would we do this? The shape of points in R is determined by the pch argument, as demonstrated
by the result of entering the following code: plot(1:10, pch=1:10). To apply this knowledge to our map,
try adding the following code to the chunk above (output not shown):

levels(stations$LEGEND) # see A roads and rapid transit stations (RTS) (not shown)
sel <- grepl("A Road Sing|Rapid", stations$LEGEND) # selection for plotting
sym <- as.integer(stations$LEGEND[sel]) # symbols
points(stations[sel,], pch = sym)
legend(legend = c("A Road", "RTS"), "bottomright", pch = unique(sym))

The above block of code first identifies which types of transport points are present in the map with levels
(this command only works on factor data). Next we select a subset of stations using a new command,
grepl, to determine which points we want to plot. Note that grepl’s first argument is a text string (hence
the quote marks) and the second is a factor (try typing class(stations$LEGEND) to test this). grepl uses
regular expressions to match whether each element in a vector of text or factor names match the text pattern
we want. In this case, because we are only interested in roundabouts that are A roads and Rapid Transit
systems (RTS). Note the use of the vertical separator | to indicate that we want to match LEGEND names
that contain either “A Road” or “Rapid”. Based on the positive matches (saved as sel, a vector of TRUE and
FALSE values), we subset the stations. Finally we plot these as points, using the integer of their name to
decide the symbol and add a legend. (See the documentation of ?legend for detail on the complexities of
legend creation in R’s base graphics.)

This may seem a frustrating and unintuitive way of altering map graphics compared with something like
QGIS. That’s because it is! It may not be worth stressing too much about base graphics because there are
intuitive alternatives for quickly creating beautiful maps in R, including tmap, ggplot and leaflet.
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Part IV: Making maps with tmap, ggplot2 and leaflet

This fourth part introduces alternative methods for creating maps with R that overcome some of the limitations
and clunkiness of R’s base graphics. Having worked hard to manipulate the spatial data, it is now time to
display the results clearly, beautifully and, in the case of leaflet, interactively.

We try the newest of the three packages, tmap, first as it is the easiest to use. Then we progress to explore
the powerful ggmap paradigm before outlining leaflet.

tmap

tmap was created to overcome some of the limitations of base graphics and ggmap. The focus is on generating
‘thematic maps’ (which show a variable change over space) quickly and easily. A concise introduction to
tmap can be accessed (after the package is installed) by using the vignette function:

library(tmap)
vignette(package = "tmap") # available vignettes in tmap
vignette("tmap-nutshell")

A couple of basic plots show the package’s intuitive syntax and attractive default parameters.

# Create our first tmap map (not shown)
qtm(shp = lnd, fill = "Partic_Per", fill.palette = "-Blues")

qtm(shp = lnd, fill = c("Partic_Per", "Pop_2001"), fill.palette = c("Blues"), ncol = 2)

Partic_Per

5 to 10
10 to 15
15 to 20
20 to 25
25 to 30

Pop_2001
0 to 50,000
50,000 to 100,000

100,000 to 150,000

150,000 to 200,000

200,000 to 250,000

250,000 to 300,000

300,000 to 350,000

Figure 12: Side-by-side maps of crimes and % voting conservative

The plot above shows the ease with which tmap can create maps next to each other for different variables.
Figure 13 illustrates the power of the tm_facets command.

tm_shape(lnd) +
tm_fill("Pop_2001", thres.poly = 0) +

tm_facets("name", free.coords=TRUE, drop.shapes=TRUE) +
tm_layout(legend.show = FALSE, title.position = c("center", "center"), title.size = 20)

A more established plotting paradigm is ggplot2 package. This has been subsequently adapted to maps
thank to ggmap, as described below.
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Barking and Dagenham Barnet Bexley Brent Bromley Camden

City of London Croydon Ealing Enfield Greenwich Hackney

Hammersmith and Fulham Haringey Harrow Havering Hillingdon Hounslow

Islington Kensington and Chelsea Kingston upon Thames Lambeth Lewisham Merton

Newham Redbridge Richmond upon Thames Southwark Sutton Tower Hamlets

Waltham Forest Wandsworth Westminster

Figure 13: Facetted map of London Boroughs created by tmap

ggmap

ggmap is based on the ggplot2 package, an implementation of the Grammar of Graphics (Wilkinson 2005).
ggplot2 can replace the base graphics in R (the functions you have been plotting with so far). It contains
default options that match good visualisation practice.

ggplot2 is one of the best documented packages in R. This documentation can be found on-line and it is
recommended you test out the examples and play with them: http://docs.ggplot2.org/current/ .

Good examples of graphs can also be found on the website cookbook-r.com.

Load the package with . It is worth noting that the base plot() function requires less data preparation but
more effort in control of features. qplot() and ggplot() from ggplot2 require some additional work to
format the spatial data but select colours and legends automatically, with sensible defaults.

As a first attempt with ggplot2 we can create a scatter plot with the attribute data in the lnd object created
previously. Type:

p <- ggplot(lnd@data, aes(Partic_Per, Pop_2001))

What you have just done is set up a ggplot object where you say where you want the input data to come
from. lnd@data is actually a data frame contained within the wider spatial object lnd (the @ enables you
to access the attribute table of the shapefile). The characters inside the aes argument refer to the parts of
that data frame you wish to use (the variables Partic_Per and Pop_2001). This has to happen within the
brackets of aes(), which means, roughly speaking ‘aesthetics that vary’.

If you just type p and hit enter you get the error No layers in plot. This is because you have not
told ggplot what you want to do with the data. We do this by adding so-called “geoms”, in this case
geom_point().

p + geom_point()

Within the brackets you can alter the nature of the points. Try something like p + geom_point(colour =
"red", size=2) and experiment.
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Figure 14: A simple graphic produced with ggplot2

If you want to scale the points by borough population and colour them by sports participation this is also
fairly easy by adding another aes() argument.

p + geom_point(aes(colour=Partic_Per, size=Pop_2001)) # not shown

The real power of ggplot2 lies in its ability to add layers to a plot. In this case we can add text to the plot.

p + geom_point(aes(colour = Partic_Per, size = Pop_2001)) +
geom_text(size = 2, aes(label = name))
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Figure 15: ggplot for text

This idea of layers (or geoms) is quite different from the standard plot functions in R, but you will find that
each of the functions does a lot of clever stuff to make plotting much easier (see the documentation for a full
list).

In the following steps we will create a map to show the percentage of the population in each London Borough
who regularly participate in sports activities.

ggmap requires spatial data to be supplied as data.frame, using fortify(). The generic plot() function
can use Spatial* objects directly; ggplot2 cannot. Therefore we need to extract them as a data frame. The
fortify function was written specifically for this purpose. For this to work, either the maptools or rgeos
packages must be installed.
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lnd_f <- fortify(lnd) # you may need to load maptools

## Regions defined for each Polygons

This step has lost the attribute information associated with the lnd object. We can add it back using the
left_join function (this performs a data join). To use this function, ensure you have the dplyr package
installed and loaded. To find out how it works look at the output of typing ?left_join. As usual the help
documentation is a little sparse here, so let’s consider what it means in more detail. The help document
explains that left_join retains all rows from the original dataset x, whereas inner_join only retains rows
in x which have a match in y. If there is no match in the joining variable, inner_join simply adds NA values
for the new variables for the affect rows.

head(lnd_f, n = 2) # peak at the fortified data

## long lat order hole piece group id
## 1 541177.7 173555.7 1 FALSE 1 0.1 0
## 2 541872.2 173305.8 2 FALSE 1 0.1 0

lnd$id <- row.names(lnd) # allocate an id variable to the sp data
head(lnd@data, n = 2) # final check before join (requires shared variable name)

## ons_label name Partic_Per Pop_2001 CrimeCount conservative
## 1 00AF Bromley 21.7 295535 15172 85
## 2 00BD Richmond upon Thames 26.6 172330 9715 72
## n_points id
## 1 54 0
## 2 22 1

lnd_f <- left_join(lnd_f, lnd@data) # join the data

## Joining by: "id"

Take a look at the lnd_f object to see its contents (which stands for “London, fortified”). You should
see a large data frame containing the coordinates (Easting and Northing points as the data are in British
National Grid format) alongside the attribute information associated with each London Borough. If you type
print(lnd_f) you will see just how many coordinate pairs are required! To keep the output to a minimum,
take a peek at the first 2 lines of the object using just the head command:

lnd_f[1:2, 1:8]

## long lat order hole piece group id ons_label
## 1 541177.7 173555.7 1 FALSE 1 0.1 0 00AF
## 2 541872.2 173305.8 2 FALSE 1 0.1 0 00AF

It is now straightforward to produce a map using all the built-in tools (such as setting the breaks in the data)
that ggplot2 has to offer. coord_equal() is the equivalent of asp=T in regular plots with R:

map <- ggplot(lnd_f, aes(long, lat, group = group, fill = Partic_Per)) +
geom_polygon() +
coord_equal() +
labs(x = "Easting (m)", y = "Northing (m)",
fill = "% Sports\nParticipation") +

ggtitle("London Sports Participation")

22



Now, just typing map should result in your first ggplot-made map of London! There is a lot going on in the
code above, so think about it line by line: what have each of the elements of code above been designed to
do? Also note how the aes() components can be combined into one set of brackets after ggplot, that has
relevance for all layers, rather than being broken into separate parts as we did above. The different plot
functions still know what to do with these. The group=group points ggplot to the group column added by
fortify() and it identifies the groups of coordinates that pertain to individual polygons (in this case London
Boroughs).
The default colours are really nice but we may wish to produce the map in black and white, which should
produce a map like the one shown below. Try changing the colours.

map + scale_fill_gradient(low = "white", high = "black")
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Figure 16: Greyscale map

To save a plot image you just need to use ggsave after each plot, e.g. ggsave("my_map.pdf") will save the
map as a pdf, with default settings. For a larger map, you could try the following:

ggsave("large_plot.png", scale = 3, dpi = 400)

Adding base maps to ggplot2 with ggmap

ggmap is a package that uses the ggplot2 syntax as a template to create maps with image tiles taken from
map servers such as Google and OpenStreetMap:

library(ggmap) # install.packages("ggmap") if not installed

The lnd object loaded previously is in British National Grid but the ggmap image tiles are in WGS84. We
therefore need to use the lnd84 object created in the reprojection operation (see Part III). Load this with
readRDS().

lnd84 <- readRDS("data/lnd84.Rds") # load previously saved object

The first job is to calculate the bounding box (bb for short) of the lnd84 object to identify the geographic
extent of the image tiles that we need.

bb <- bbox(lnd84)
b <- (bb - rowMeans(bb)) * 1.05 + rowMeans(bb)
# scale longitude and latitude (increase bb by 5% for plot)
# replace 1.05 with 1.xx for an xx% increase in the plot size
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This is then fed into the get_map function as the location parameter. The syntax below contains 2 functions.
ggmap is required to produce the plot and provides the base map data.

lnd_b1 <- ggmap(get_map(location = b)) # create basemap for london

In much the same way as we did above we can then layer the plot with different geoms.
First fortify the lnd84 object and then merge with the required attribute data (we already did this step to
create the lnd_f object).

lnd_wgs84_f <- fortify(lnd84, region = "ons_label")
lnd_wgs84_f <- left_join(lnd_wgs84_f, lnd84@data,
by = c("id" = "ons_label"))

## Warning in left_join_impl(x, y, by$x, by$y): joining factor and character
## vector, coercing into character vector

We can now overlay this on our base map.

lnd_b1 +
geom_polygon(data = lnd_wgs84_f,
aes(x = long, y = lat, group = group, fill = Partic_Per),
alpha = 0.5)

The code above contains many parameters. Use the ggplot2 help pages (e.g. ?geom_polygon) to find out
what they are. The resulting map could be improved with a simpler basemap in black and white. Stamen
provide the tiles we need and they can be brought into the plot with the get_map function:7

# download basemap (use load("data/lnd_b2.RData") if you have no internet)
lnd_b2 <- ggmap(get_map(location = b, source = "stamen",

maptype = "toner", crop = TRUE))

We can then produce the plot as before:

library(mapproj) # mapproj library needed - install.packages("mapproj")

## Loading required package: maps

lnd_b2 +
geom_polygon(data = lnd_wgs84_f,

aes(x = long, y = lat, group = group, fill = Partic_Per),
alpha = 0.5)

Finally, to increase the detail of the base map, we can use get_map’s zoom argument (result not shown)

# download basemap (try load("data/lnd_b3.RData") if you lack internet)
lnd_b3 <- ggmap(get_map(location = b, source = "stamen",
maptype = "toner", crop = TRUE, zoom = 11))

lnd_b3 +
geom_polygon(data = lnd_wgs84_f,

aes(x = long, y = lat, group = group, fill = Partic_Per),
alpha = 0.5)

7Note that a wide range of customised on-line basemaps can be used, by modifying ‘cloudmade’ map styles or customised
Google Maps - see r-bloggers.com/creating-styled-google-maps-in-ggmap for details on the latter.
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Figure 17: Basemap 2

Creating interactive maps with leaflet

Leaflet is probably the world’s premier web mapping system, serving hundreds of thousands of maps
worldwide each day. The JavaScript library actively developed at github.com/Leaflet/Leaflet, has a strong
user community. It is fast, powerful and easy to learn.

A recent package developed by RStudio, called leaflet8 provides R bindings to Leaflet. rstudio/leaflet
allows the creation and deployment of interactive web maps in few lines of code. One of the exciting things
about the package is its tight integration with the R package for interactive on-line visualisation, shiny. Used
together, these allow R to act as a complete map-serving platform, to compete with the likes of GeoServer!
For more information on rstudio/leaflet, see rstudio.github.io/leaflet/ and the following on-line tutorial:
robinlovelace.net/r/2015/02/01/leaflet-r-package.html.

library(devtools)
install_github("rstudio/leaflet")
library(leaflet)

leaflet() %>%
addTiles() %>%
addPolygons(data = lnd84)

Advanced Task: Faceting for Maps

The below code demonstrates how to read in the necessary data for this task and ‘tidy’ it up. The data file
contains historic population values between 1801 and 2001 for London, again from the London data store.

We tidy the data so that the columns become rows. In other words, we convert the data from ‘flat’ to
‘long’ format, which is the form required by ggplot2 for faceting graphics: the date of the population survey
becomes a variable in its own right, rather than being strung-out over many columns.

london_data <- read.csv("data/census-historic-population-borough.csv")
library(tidyr) # if not install it, or skip the next two steps
ltidy <- gather(london_data, date, pop, -Area.Code, -Area.Name)
head(ltidy, 2) # check the output (not shown)

8We also refer to this as rstudio/leaflet, after the project’s on-line home at github.com/rstudio/leaflet, to avoid confusion
with the JavaScript library.
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Figure 18: The lnd84 object loaded in rstudio via the leaflet package

In the above code we take the london_data object and create the column names ‘date’ (the date of the record,
previously spread over many columns) and ‘pop’ (the population which varies). The minus (-) symbol in this
context tells gather not to include the Area.Name and Area.Code as columns to be removed. In other words,
“leave these columns be”. Data tidying is an important subject: more can be read on the subject in Wickham
(2014) or in a vignette about the package, accessed from within R by entering vignette("tidy-data").

Merge the population data with the London borough geometry contained within our lnd_f object, using the
left_join function from the dplyr package:

head(lnd_f, 2) # identify shared variables with ltidy

## long lat order hole piece group id ons_label name Partic_Per
## 1 541177.7 173555.7 1 FALSE 1 0.1 0 00AF Bromley 21.7
## 2 541872.2 173305.8 2 FALSE 1 0.1 0 00AF Bromley 21.7
## Pop_2001 CrimeCount conservative n_points
## 1 295535 15172 85 54
## 2 295535 15172 85 54

ltidy <- rename(ltidy, ons_label = Area.Code) # rename Area.code variable
lnd_f <- left_join(lnd_f, ltidy)

## Joining by: "ons_label"

## Warning in left_join_impl(x, y, by$x, by$y): joining factor and character
## vector, coercing into character vector

Rename the date variable (use ?gsub and Google ‘regex’ to find out more).

lnd_f$date <- gsub(pattern = "Pop_", replacement = "", lnd_f$date)

We can now use faceting to produce one map per year (Fig. 19).
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ggplot(data = lnd_f, # the input data
aes(x = long, y = lat, fill = pop/1000, group = group)) + # define variables
geom_polygon() + # plot the boroughs
geom_path(colour="black", lwd=0.05) + # borough borders
coord_equal() + # fixed x and y scales
facet_wrap(~ date) + # one plot per time slice
scale_fill_gradient2(low = "green", mid = "grey", high = "red", # colors
midpoint = 150, name = "Population\n(thousands)") + # legend options

theme(axis.text = element_blank(), # change the theme options
axis.title = element_blank(), # remove axis titles
axis.ticks = element_blank()) # remove axis ticks

# ggsave("figure/facet_london.png", width = 9, height = 9) # save figure
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Figure 19: Faceted plot of the distribution of London’s population over time

There is a lot going on here so explore the documentation to make sure you understand it. Try out different
colour values as well.

Try experimenting with the above code block to see what effects you can produce.

Challenge 1: Try creating this plot for the % of population instead of the absolute population.

Challenge 2: For bonus points, try creating an animation of London’s evolving population over
time using the excellent animation package.
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Part V: Taking spatial data analysis in R further

The skills taught in this tutorial are applicable to a very wide range of situations, spatial or not. Often
experimentation is the most rewarding learning method, rather than just searching for the ‘best’ way of doing
something (Kabakoff, 2011). We recommend you play around with your data.

If you would like to learn more about R’s spatial functionalities, including more exercises on loading, saving
and manipulating data, we recommend a slightly longer and more advanced tutorial (Cheshire and Lovelace,
2014). An up-to-date repository of this project, including example data and all the code used, can be found
on its GitHub page: github.com/geocomPP/sdvwR. There are also a number of bonus ‘vignettes’ associated
with the present tutorial. These can be found on the vignettes page of the project’s repository.

Another advanced tutorial is “Using spatial data”, which has example code and data that can be downloaded
from the useR 2013 conference page, available here: http://www.edii.uclm.es/~useR-2013//Tutorials/Bivand.
html. Such tutorials are worth doing as they will help you understand R’s spatial ‘ecosystem’ as a cohesive
whole rather than as a collection of isolated functions. In R the whole is greater than the sum of its parts.

The supportive on-line communities surrounding large open source programs such as R are one of their
greatest assets, so we recommend you become an active “open source citizen” rather than a passive consumer
(Ramsey & Dubovsky, 2013).

This does not necessarily mean writing a new package or contributing to R’s ‘Core Team’ — it can simply
involve helping others use R. We therefore conclude the tutorial with a list of resources that will help you
further sharpen you R skills, find help and contribute to the growing on-line R community:

• R’s homepage hosts a wealth of official and contributed guides. http://cran.r-project.org
• StackOverflow and GIS.StackExchange groups (the “[R]” search term limits the results). If your question

has not been answered yet, just ask, preferably with a reproducible example.
• R’s mailing lists, especially R-sig-geo. See r-project.org/mail.html.

Books: despite the strength of R’s on-line community, nothing beats a physical book for concentrated learning.
We recommend the following:

• Wickham (2009): ‘ggplot2: elegant graphics for data analysis’
• Bivand et al. (2013) : ‘Applied spatial data analysis with R’ - provides a dense and detailed overview

of spatial data analysis.
• Kabacoff (2011): ‘R in action’ - more general R book with many fun worked examples.
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R quick reference

#: comments all text until line end

df <- data.frame(x = 1:9, y = (1:9)ˆ2: create new object of class data.frame, called df, and assign
values

help(plot): ask R for basic help on function, the same as ?plot. Replace plot with any function (e.g.
spTransform).

library(ggplot2): load a package (replace ggplot2 with your package name)

install.packages("ggplot2"): install package — note quotation marks

setwd("C:/Users/username/Desktop/"): set R’s working directory (set it to your project’s folder)

nrow(df): count the number of rows in the object df

summary(df): summary statistics of the object df

head(df): display first 6 lines of object df

plot(df): plot object df

save(df, "C:/Users/username/Desktop/" ): save df object to specified location

rm(df): remove the df object

proj4string(df): query coordinate reference system of df object

spTransform(df, CRS("+init=epsg:4326"): reproject df object to WGS84

Further information

An up-to-date version of this tutorial is maintained at https://github.com/Robinlovelace/Creating-maps-in-R.
The source files used to create this tutorial, including the input data can be downloaded as a zip file, as
described below. The entire tutorial was written in RMarkdown, which allows R code to run as the document
compiles, ensuring reproducibility.

Any suggested improvements or new vignettes are welcome, via email to Robin or by forking the master
version of this document.

The colourful syntax highlighting in this document is thanks to RMarkdown. We try to follow best practice
in terms of style, roughly following Google’s style guide, an in-depth guide written by Johnson (2013) and a
chapter from Advanced R (Wickham, in press).

Acknowledgements

The tutorial was developed for a series of Short Courses funded by the National Centre for Research Methods
(NCRM), via the TALISMAN node (see geotalisman.org). Thanks to the ESRC for funding applied methods
research. Many thanks to Rachel Oldroyd, Alistair Leak, Hannah Roberts and Phil Jones who helped
develop and demonstrate these materials. Amy O’Neill organised the course and encouraged feedback from
participants. The final thanks is to all users and developers of open source software for making powerful
tools such as R accessible and enjoyable to use.

If you have found this tutorial useful in your work, please cite it:

Lovelace, R., & Cheshire, J. (2014). Introduction to visualising spatial data in R. National Centre for Research
Methods Working Papers, 14(03). Retrieved from https://github.com/Robinlovelace/Creating-maps-in-R

29

https://github.com/Robinlovelace/Creating-maps-in-R/blob/master/intro-spatial-rl.pdf
https://github.com/Robinlovelace/Creating-maps-in-R
https://github.com/Robinlovelace/Creating-maps-in-R/archive/master.zip
http://rmarkdown.rstudio.com/
https://github.com/Robinlovelace/Creating-maps-in-R/tree/master/vignettes
https://help.github.com/articles/fork-a-repo
https://github.com/Robinlovelace/Creating-maps-in-R/blob/master/intro-spatial.Rmd
https://github.com/Robinlovelace/Creating-maps-in-R/blob/master/intro-spatial.Rmd
http://rmarkdown.rstudio.com/
http://cran.r-project.org/web/packages/rockchalk/vignettes/Rstyle.pdf
http://adv-r.had.co.nz/Style.html
http://adv-r.had.co.nz/
http://www.geotalisman.org/
http://www.esrc.ac.uk/
https://github.com/Robinlovelace/Creating-maps-in-R


The bibtex entry for this item can be downloaded from https://raw.githubusercontent.com/Robinlovelace/
Creating-maps-in-R/master/citation.bib or here.
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